Fallonferrell0925

Z Iurium Wiki

Verze z 8. 9. 2024, 20:39, kterou vytvořil Fallonferrell0925 (diskuse | příspěvky) (Založena nová stránka s textem „A paper-based electrode is a very attractive component for a disposable, nontoxic, and flexible biosensor. In particular, wearable biosensors, which have r…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

A paper-based electrode is a very attractive component for a disposable, nontoxic, and flexible biosensor. In particular, wearable biosensors, which have recently been attracting interest, not only require these characteristics of paper-based electrodes but must also be able to detect various ions and biomolecules in biological fluids. In this paper, we demonstrate the detection ability of paper-based metal electrodes for wearable biosensors as part of a wireless potentiometric measurement system, focusing on the detection of pH and sodium ions. The paper-based metal electrodes were obtained by simply coating a silicone-rubber-coated paper sheet with a Au (/Cr) thin film by sputtering then modifying it with different functional membranes such as an oxide membrane (Ta2O5) and a fluoropolysilicone (FPS)-based Na+-sensitive membrane, corresponding to the targeted ions. Satisfactory and stable detection sensitivities of the modified paper-based Au electrodes were obtained over several weeks even when they were bent to a radius of curvature in the range of 6.5 to 25 mm, assuming use in a flexible body patch biosensor. Moreover, the Na+ concentration in a sweat sample was evaluated using the paper-based Au electrode with the FPS-based Na+-sensitive membrane in a wireless and real-time manner while the electrode was bent. Thus, owing to their complex mesh structure, flexible paper sheets should be suitable for use as potentiometric electrodes for wearable wireless biosensors.In this study, we developed a high-performance extended-gate ion-sensitive field-effect transistor (EG-ISFET) sensor on a flexible polyethylene naphthalate (PEN) substrate. The EG-ISFET sensor comprises a tin dioxide (SnO2) extended gate, which acts as a detector, and an amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) for a transducer. In order to self-amplify the sensitivity of the pH sensors, we designed a uniquely-structured a-IGZO TFT transducer with a high-k engineered top gate insulator consisting of a silicon dioxide/tantalum pentoxide (SiO2/Ta2O5) stack, a floating layer under the channel, and a control gate coplanar with the channel. The SiO2/Ta2O5 stacked top gate insulator and in-plane control gate significantly contribute to capacitive coupling, enabling the amplification of sensitivity to be enlarged compared to conventional dual-gate transducers. For a pH sensing method suitable for EG-ISFET sensors, we propose an in-plane control gate (IG) sensing mode, instead of conventional single-gate (SG) or dual-gate (DG) sensing modes. As a result, a pH sensitivity of 2364 mV/pH was achieved at room temperature - this is significantly superior to the Nernstian limit (59.15 mV/pH at room temperature). In addition, we found that non-ideal behavior was improved in hysteresis and drift measurements. Therefore, the proposed transparent EGISFFET sensor with an IG sensing mode is expected to become a promising platform for flexible and wearable biosensing applications.The empirical modeling methods are widely used in corrosion behavior analysis. But due to the limited regression ability of conventional algorithms, modeling objects are often limited to individual factors and specific environments. This study proposed a modeling method based on machine learning to simulate the marine atmospheric corrosion behavior of low-alloy steels. The correlations between material, environmental factors and corrosion rate were evaluated, and their influences on the corrosion behavior of steels were analyzed intuitively. By using the selected dominating factors as input variables, an optimized random forest model was established with a high prediction accuracy of corrosion rate (R2 values, 0.94 and 0.73 to the training set and testing set) to different low-alloy steel samples in several typical marine atmospheric environments. The results demonstrated that machine learning was efficient in corrosion behavior analysis, which usually involves a regression analysis of multiple factors.Corrosion-control coatings which can enhance bone formation and be completely replaced by bone are attractive for biodegradable Mg alloys. Carbonate apatite (CAp) and hydroxyapatite (HAp) coatings were formed on Mg-4 wt% Y-3 wt% rare earth (WE43) alloy as a corrosion-control and bioabsorbable coating in the coating solution with various concentrations of NaHCO3. The incorporation of carbonate group in apatite structure was examined using X-ray diffraction and Fourier transform infrared spectroscopy. Rat osteoclast precursor and MC3T3-E1 osteoblast cells were cultured on the CAp- and HAp-coated WE43 to examine the osteoclastic resorption and the alkaline phosphatase (ALP) activity, respectively. Mg ions in the used medium were quantified to examine the corrosion-control ability. The NaHCO3 addition in the solution resulted in the formation of B-type CAp in which the phosphate group of apatite structure was substituted with the carbonate group. The osteoclastic resorption was observed only for the CAp coatings as the cracking of the coatings and the corrosion of substrate WE43 strongly localized under osteoclast cell bodies. The CAp and HAp coatings significantly enhanced the ALP activity of osteoblasts. The CAp-coated WE43 specimens showed 1/5 smaller amount of Mg ion release than the uncoated WE43 on the first day of culturing osteoblasts. For the subsequent 22 days, the Mg ion release was reduced to 1/2 by the CAp coatings. In the presence of osteoclasts, the CAp coatings showed slightly lower corrosion protectiveness than the HAp coating. It was demonstrated that the CAp coatings can be a bioabsorbable and corrosion-control coating for biodegradable Mg alloys.Once metal-based engineered nanoparticles (NPs) are released into the aquatic environment, they are expected to interact with other existing co-contaminants. A knowledge gap exists as to how the interaction of NPs with other co-contaminants occurs. BAY1000394 Here we selected ZnO NPs among various NPs, with Ag ion existing as a contaminant in the aquatic environment by Ag NPs widely used. A novel modeling strategy was demonstrated enabling quantitative and predictive evaluation of the aqueous mixture nanotoxicity. Individual and binary mixture toxicity tests of ZnO NPs and silver (as AgNO3) on Daphnia magna were conducted and compared to determine whether the presence of Ag ions affects the toxicity of ZnO NPs. Binary mixture toxicity was evaluated based on the concentration addition (CA) and independent action models. The CA dose-ratio dependent model was found to be the model of best fit for describing the pattern of mixture toxicity. The MIX I and MIX III suspensions (higher ratios of ZnO NPs to AgNO3) showed a synergism, whereas the MIX II suspension (lower ratio of ZnO NPs to AgNO3) showed an antagonism.

Autoři článku: Fallonferrell0925 (Udsen Stevenson)