Thorntonhedegaard5932

Z Iurium Wiki

Verze z 8. 9. 2024, 16:55, kterou vytvořil Thorntonhedegaard5932 (diskuse | příspěvky) (Založena nová stránka s textem „The frequency shifts and lattice dynamics to unveil the vibrational properties of platinum diselenide (PtSe2) are investigated using pressure-dependent pol…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The frequency shifts and lattice dynamics to unveil the vibrational properties of platinum diselenide (PtSe2) are investigated using pressure-dependent polarized Raman scattering at room temperature up to 25 GPa. The two phonon modes Eg and A1g display similar hardening trends; both the Raman peak positions and full widths at half-maximum have distinct mutation phenomena under high pressure. Especially, the split Eg mode at 4.3 GPa confirms the change of the lattice symmetry. With the aid of the first-principles calculations, a new pressure stabilization structure C2/m of PtSe2 has been found to be in good agreement with experiments. The band structures calculations reveal that the new phase is a novel type-I Dirac semimetal. The results demonstrate that the pressure-dependent Raman spectra combined with theoretical predictions may open a new window for searching and controlling the phase structure and Dirac cones of two-dimensional materials.We investigated the evolution of ferromagnetism in layered Fe3GeTe2 flakes under different pressures and temperatures using in situ magnetic circular dichroism (MCD) spectroscopy. We found that the rectangular shape of the hysteresis loop under an out-of-plane magnetic field sweep can be sustained below 7 GPa. Above that pressure, an intermediate state appears in the low-temperature region signaled by an 8-shaped skewed hysteresis loop. Meanwhile, the coercive field and Curie temperature decrease with increasing pressures, implying the decrease of the exchange interaction and the magneto-crystalline anisotropy under pressures. The intermediate phase has a labyrinthine domain structure, which is attributed to the increase of the ratio of exchange interaction to magneto-crystalline anisotropy based on Jagla's theory. Moreover, our calculations reveal a weak structural transition around 6 GPa that corresponds to a significant change in the FeI-FeI bond length, which has strong influences on magnetic interaction. Detailed analysis on exchange interaction and magneto-crystalline anisotropy with pressure shows a consistent trend with experiments."Water-in-salt" (WIS) and "water-in-bisalt" (WIBS) electrolytes have recently been developed for Li-ion batteries, combining the safety and environmental friendliness of aqueous electrolytes with a larger operating window made possible by a solid-electrolyte interphase. We report quasielastic neutron scattering (QENS) measurements on solutions of a WIS electrolyte at two concentrations, 13.9 and 21 m (molal) lithium bis(trifluoromethane)sulfonimide LiTFSI in H2O/D2O and a WIBS electrolyte at (21 m LiTFSI + 7 m lithium triflate (LiOTf)) in H2O/D2O. The data were Fourier transformed to obtain experimental intermediate scattering functions (ISFs) and compared with corresponding quantities obtained from molecular dynamics (MD) simulations. Both QENS and MD ISFs could be fitted well by a single stretched exponential function to obtain apparent translational diffusion coefficients for the water molecules. The QENS values agree well with the MD simulations for the 13.9 and 21 m solutions, but MD simulations predict a slower relaxation of water compared to QENS for the WIBS electrolyte. Comparison of the incoherent and coherent scattering reveals much faster water dynamics compared with structural relaxation of the ionic framework, consistent with the nanodomain picture where the lithium diffusion occurs through the tortuous water domain around the slower relaxing ionic matrix, leading to highly non-Gaussian water motion.Molecular dielectric materials require ostensibly conflicting requirements of high polarizability and low conductivity. As previous efforts toward molecular insulators focused on saturated molecules, it remains an open question whether π- and σ-transport can be simultaneously suppressed in conjugated systems. Here, we demonstrate that there are conjugated molecules where the σ-transmission is suppressed by destructive σ-interference, while the π-transmission can be suppressed by a localized disruption of conjugation. Using density functional theory, we study the Landauer transmission and ballistic current density, which allow us to determine how the transmission is affected by various structural changes in the molecule. We find that in para-linked oligophenyl rings the σ-transmission can be suppressed by changing the remaining hydrogens to methyl groups due to the inherent gauche-like structure of the carbon backbone within a benzene ring, similar to what was previously seen in saturated systems. At the same time, the methyl groups fulfill a dual purpose as they modulate the twist angle between neighboring phenyl rings. When neighboring rings are orthogonal to each other, the transmission through both π- and σ-systems is effectively suppressed. Alternatively, breaking conjugation in a single phenyl ring by saturating two carbons atoms with two methyl substituents on each carbon, results in suppressed π- and σ-transport independent of dihedral angle. These two strategies demonstrate that methyl-substituted oligophenyls are promising candidates for the development of molecular dielectric materials.Although computational prediction of new ice phases is a niche field in water science, the scientific subject itself is representative of two important areas in physical chemistry, namely, statistical thermodynamics and molecular simulations. The prediction of a variety of novel ice phases has also attracted general public interest since the 1980s. In particular, the prediction of low-dimensional ice phases has gained momentum since the confirmation of a number of low-dimensional "computer ice" phases in the laboratory over the past decade. In this Perspective, the research advancements in computational prediction of novel ice phases over the past few years are reviewed. Particular attention is placed on new ice phases whose physical properties or dimensional structures are distinctly different from conventional bulk ices. Specific topics include the (i) formation of superionic ices, (ii) electrofreezing of water under high pressure and in a high external electric field, (iii) prediction of low-density porous ice at strongly negative pressure, (iv) ab initio computational study of two-dimensional (2D) ice under nanoscale confinement, and (v) 2D ices formed on a solid surface near ambient temperature without nanoscale confinement. Clearly, the formation of most of these novel ice phases demands certain extreme conditions. Ongoing challenges and new opportunities for predicting new ice phases from either classical molecular dynamics simulation or high-level ab initio computation are discussed.Colloidal quantum dots (QDs) suffer from pervasive photoluminescence intermittency that frustrates applications and correlates with irreversible photodegradation. In single-QD spectroscopies, blinking manifests as sporadic switching between ON and OFF states without a characteristic time scale, and the longstanding search for mechanisms has been recently accelerated by techniques to controllably modulate the QD environment. Here, we develop an all-optical modulation scheme and demonstrate that sub-bandgap light tuned to the stimulated emission transition perturbs the blinking statistics of individual CdSe/ZnS core/shell QDs. Resonant optical modulation progressively suppresses long-duration ON events, quantified by a power-law slope that is more negative on average (ΔαON = 0.46 ± 0.09), while OFF distributions and truncation times are unaffected. This characteristic effect is robust to choices in background subtraction and statistical analysis but supports mechanistic descriptions beyond first-order kinetics. This demonstration of all-optical perturbation of QD blinking dynamics provides an experimental avenue to disentangle the complex photophysics of photoluminescence intermittency.Brain microvascular endothelial cells derived from induced pluripotent stem cells (dhBMECs) are a scalable and reproducible resource for studies of the human blood-brain barrier, including mechanisms and strategies for drug delivery. Confluent monolayers of dhBMECs recapitulate key in vivo functions including tight junctions to limit paracellular permeability and efflux and nutrient transport to regulate transcellular permeability. Techniques for cryopreservation of dhBMECs have been reported; however, functional validation studies after long-term cryopreservation have not been extensively performed. read more Here, we characterize dhBMECs after 1 year of cryopreservation using selective purification on extracellular matrix-treated surfaces and ROCK inhibition. One-year cryopreserved dhBMECs maintain functionality of tight junctions, efflux pumps, and nutrient transporters with stable protein localization and gene expression. Cryopreservation is associated with a decrease in the yield of adherent cells and unique responses to cell stress, resulting in altered paracellular permeability of Lucifer yellow. Additionally, cryopreserved dhBMECs reliably form functional three-dimensional microvessels independent of cryopreservation length, with permeabilities lower than non-cryopreserved two-dimensional models. Long-term cryopreservation of dhBMECs offers key advantages including increased scalability, reduced batch-to-batch effects, the ability to conduct well-controlled follow up studies, and support of multisite collaboration from the same cell stock, all while maintaining phenotype for screening pharmaceutical agents.Targeted alpha-particle therapy (TAT) might be a relevant therapeutic strategy to circumvent resistance to conventional therapies in the case of HER2-positive metastatic cancer. Single-domain antibody fragments (sdAb) are promising vehicles for TAT because of their excellent in vivo properties, high target affinity, and fast clearance kinetics. This study combines the cytotoxic α-particle emitter bismuth-213 (213Bi) and HER2-targeting sdAbs. The in vitro specificity, affinity, and cytotoxic potency of the radiolabeled complex were analyzed on HER2pos cells. Its in vivo biodistribution through serial dissections and via Cherenkov and micro-single-photon emission computed tomography (CT)/CT imaging was evaluated. Finally, the therapeutic efficacy and potential associated toxicity of [213Bi]Bi-DTPA-2Rs15d were evaluated in a HER2pos tumor model that manifests peritoneal metastasis. In vitro, [213Bi]Bi-DTPA-2Rs15d bound HER2pos cells in a HER2-specific way. In mice, high tumor uptake was reached already 15 min after injection, and extremely low uptake values were observed in normal tissues. Co-infusion of gelofusine resulted in a 2-fold reduction in kidney uptake. Administration of [213Bi]Bi-DTPA-2Rs15d alone and in combination with trastuzumab resulted in a significant increase in median survival. We describe for the very first time the successful labeling of an HER2-sdAb with the α-emitter 213Bi, and after intravenous administration, revealing high in vivo stability and specific accumulation in target tissue and resulting in an increased median survival of these mice especially in combination with trastuzumab. These results indicate the potential of [213Bi]Bi-DTPA-sdAb as a new radioconjugate for TAT, alone and as an add-on to trastuzumab for the treatment of HER2pos metastatic cancer.

Autoři článku: Thorntonhedegaard5932 (Carr Salinas)