Medinadavidsen0271

Z Iurium Wiki

Verze z 7. 9. 2024, 20:28, kterou vytvořil Medinadavidsen0271 (diskuse | příspěvky) (Založena nová stránka s textem „The Dendrobium plants (members of the Orchidaceae family) are used as traditional Chinese medicinal herbs. Bibenzyl, one of the active compounds in Dendrob…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The Dendrobium plants (members of the Orchidaceae family) are used as traditional Chinese medicinal herbs. Bibenzyl, one of the active compounds in Dendrobium officinale, occurs in low amounts among different tissues. However, market demands require a higher content of thes compounds to meet the threshold for drug production. There is, therefore, an immediate need to dissect the physiological and molecular mechanisms underlying how bibenzyl compounds are biosynthesized in D. officinale tissues. In this study, the accumulation of erianin and gigantol in tissues were studied as representative compounds of bibenzyl. Exogenous application of Methyl-Jasmonate (MeJA) promotes the biosynthesis of bibenzyl compounds; therefore, transcriptomic analyses were conducted between D. officinale-treated root tissues and a control. Our results show that the root tissues contained the highest content of bibenzyl (erianin and gigantol). We identified 1342 differentially expressed genes (DEGs) with 912 up-regulated and 430 down-regulated genes in our transcriptome dataset. Most of the identified DEGs are functionally involved in the JA signaling pathway and the biosynthesis of secondary metabolites. We also identified two candidate cytochrome P450 genes and nine other enzymatic genes functionally involved in bibenzyl biosynthesis. Our study provides insights on the identification of critical genes associated with bibenzyl biosynthesis and accumulation in Dendrobium plants, paving the way for future research on dissecting the physiological and molecular mechanisms of bibenzyl synthesis in plants as well as guide genetic engineering for the improvement of Dendrobium varieties through increasing bibenzyl content for drug production and industrialization.Since ash from wood biomass mostly ends up in landfills, recent research has focused on finding its economic and environmental added value as a potential new raw material in the construction industry. However, for wood ash to be used on an industrial scale in construction, a strategy for its proper storage must be defined. Proper storage of WBA is important to ensure quality control for applications in cementitious composites. This work investigated the aging of wood biomass ash (WBA) collected from five different power plants in Croatia and its influence on the performance of cementitious composites. WBA and cement pastes were investigated at different aging times (up to one year) using thermogravimetric analysis (TGA), powder X-ray diffraction (XRD), isothermal calorimetry and initial and final setting times. The results showed that storage of WBA in closed and open containers resulted in carbonation and hydration of mainly free lime and periclase, respectively, which affected the reactivity and setting times of WBA cement pastes.Neighborhood selection is very important for local region feature learning in point cloud learning networks. Different neighborhood selection schemes may lead to quite different results for point cloud processing tasks. The existing point cloud learning networks mainly adopt the approach of customizing the neighborhood, without considering whether the selected neighborhood is reasonable or not. To solve this problem, this paper proposes a new point cloud learning network, denoted as Dynamic neighborhood Network (DNet), to dynamically select the neighborhood and learn the features of each point. The proposed DNet has a multi-head structure which has two important modules the Feature Enhancement Layer (FELayer) and the masking mechanism. The FELayer enhances the manifold features of the point cloud, while the masking mechanism is used to remove the neighborhood points with low contribution. The DNet can learn the manifold features and spatial geometric features of point cloud, and obtain the relationship between each point and its effective neighborhood points through the masking mechanism, so that the dynamic neighborhood features of each point can be obtained. Experimental results on three public datasets demonstrate that compared with the state-of-the-art learning networks, the proposed DNet shows better superiority and competitiveness in point cloud processing task.Poplar wood is the main source of renewable biomass energy worldwide, and is also considered to be a model system for studying woody plants. The Full-length cDNA Over-eXpressing (FOX) gene hunting system is an effective method for generating gain-of-function mutants. Large numbers of novel genes have successfully been identified from many herbaceous plants according to the phenotype of gain-of-function mutants under normal or abiotic stress conditions using this system. However, the system has not been used for functional gene identification with high-throughput mutant screening in woody plants. In this study, we constructed a FOX library from the Chinese white poplar, Populus tomentosa. The poplar cDNA library was constructed into the plant expression vector pEarleyGate101 and further transformed into Arabidopsis thaliana (thale cress). We collected 1749 T1 transgenic plants identified by PCR. read more Of these, 593 single PCR bands from different transgenic lines were randomly selected for sequencing, and 402 diverse sequences of poplar genes were isolated. Most of these genes were involved in photosynthesis, environmental adaptation, and ribosome biogenesis based on Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation. We characterized in detail two mutant lines carrying PtoCPCa or PtoWRKY13 cDNA insertions. Phenotypic characterization showed that overexpression of these genes in A. thaliana affected trichome development or secondary cell wall (SCW) deposition, respectively. Together, the Populus-FOX-Arabidopsis library generated in our experiments will be helpful for efficient discovery of novel genes in poplar.A novel class of carbon nanotube (CNT)-based nanomaterials has been surging since 1991 due to their noticeable mechanical and electrical properties, as well as their good electron transport properties. This is evidence that the development of CNT-reinforced polymer composites could contribute in expanding many areas of use, from energy-related devices to structural components. As a promising material with a wide range of applications, their poor solubility in aqueous and organic solvents has hindered the utilizations of CNTs. The current state of research in CNTs-both single-wall carbon nanotubes (SWCNT) and multiwalled carbon nanotube (MWCNT)-reinforced polymer composites-was reviewed in the context of the presently employed covalent and non-covalent functionalization. As such, this overview intends to provide a critical assessment of a surging class of composite materials and unveil the successful development associated with CNT-incorporated polymer composites. The mechanisms related to the mechanical, thermal, and electrical performance of CNT-reinforced polymer composites is also discussed. It is vital to understand how the addition of CNTs in a polymer composite alters the microstructure at the micro- and nano-scale, as well as how these modifications influence overall structural behavior, not only in its as fabricated form but also its functionalization techniques. The technological superiority gained with CNT addition to polymer composites may be advantageous, but scientific values are here to be critically explored for reliable, sustainable, and structural reliability in different industrial needs.The body size and (or) complexity of organisms is not uniformly related to the amount of genetic material (DNA) contained in each of their cell nuclei ('genome size'). This surprising mismatch between the physical structure of organisms and their underlying genetic information appears to relate to variable accumulation of repetitive DNA sequences, but why this variation has evolved is little understood. Here, I show that genome size correlates more positively with egg size than adult size in crustaceans. I explain this and comparable patterns observed in other kinds of animals and plants as resulting from genome size relating strongly to cell size in most organisms, which should also apply to single-celled eggs and other reproductive propagules with relatively few cells that are pivotal first steps in their lives. However, since body size results from growth in cell size or number or both, it relates to genome size in diverse ways. Relationships between genome size and body size should be especially weak in large organisms whose size relates more to cell multiplication than to cell enlargement, as is generally observed. The ubiquitous single-cell 'bottleneck' of life cycles may affect both genome size and composition, and via both informational (genotypic) and non-informational (nucleotypic) effects, many other properties of multicellular organisms (e.g., rates of growth and metabolism) that have both theoretical and practical significance.A comparative analysis concerning bio-based gels production, to be used for tissue regeneration, has been performed in this review. These gels are generally applied as scaffolds in the biomedical field, thanks to their morphology, low cytotoxicity, and high biocompatibility. Focusing on the time interval 2015-2020, the production of 3D scaffolds of alginate, chitosan and agarose, for skin and bone regeneration, has mainly been investigated. Traditional techniques are critically reviewed to understand their limitations and how supercritical CO2-assisted processes could overcome these drawbacks. In particular, even if freeze-drying represents the most widespread drying technique used to produce polysaccharide-based cryogels, supercritical CO2-assisted drying effectively allows preservation of the nanoporous aerogel structure and removes the organic solvent used for gel preparation. These characteristics are essential for cell adhesion and proliferation.A geometrical modification on silicon wafers before the bonding process, aimed to decrease (1) the residual stress caused by glass frit bonding, is proposed. Finite element modeling showed that (2) by introducing this modification, the wafer out-of-plane deflection was decreased by 34%. Moreover, (3) fabricated wafers with the proposed geometrical feature demonstrated an improvement for the (4) warpage with respect to the plain wafers. A benefit for curvature variation and overall shape of the (5) bonded wafers was also observed.Chitosan (CS) modified with ethylenediamine tetraacetic acid (EDTA) was further modified with the zeolite imidazole framework (ZIF-8) by in situ growth method and was employed as adsorbent for the removal of rare-earth elements (REEs). The material (EDTA-CS@ZIF-8) and ZIF-8 and CS were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), and nitrogen adsorption/desorption experiments (N2- Brunauer-Emmet-Teller (BET)). The effects of adsorbent dosage, temperature, the pH of the aqueous solution, contact time on the adsorption of REEs (La(III), Eu(III), and Yb(III)) by EDTA-CS@ZIF-8 were studied. Typical adsorption isotherms (Langmuir, Freundlich, and Dubinin-Radushkevich (D-R)) were determined for the adsorption process, and the maximal adsorption capacity was estimated as 256.4 mg g-1 for La(III), 270.3 mg g-1 for Eu(III), and 294.1 mg g-1 for Yb(III). The adsorption kinetics results were consistent with the pseudo-second-order equation, indicating that the adsorption process was mainly chemical adsorption.

Autoři článku: Medinadavidsen0271 (Vangsgaard Mcintyre)