Reyessloan3414
(1) Background Persons with multiple sclerosis (pwMS) are often characterized as ideal adopters of new digital healthcare trends, but it is worth thinking about whether and which pwMS will be targeted and served by a particular eHealth service like a patient portal. With our study, we wanted to explore needs and barriers for subgroups of pwMS and their caregivers when interacting with eHealth services in care and daily living. (2) Methods This study comprises results from two surveys one collecting data from pwMS and their relatives (as informal caregivers) and another one providing information on the opinions and attitudes of healthcare professionals (HCPs). Data were analyzed descriptively and via generalized linear models. (3) Results 185 pwMS, 25 informal caregivers, and 24 HCPs in the field of MS participated. Nine out of ten pwMS used information technology on a daily base. Individual impairments like in vision and cognition resulted in individual needs like the desire to actively monitor their disease course or communicate with their physician in person. HCPs reported that a complete medication overview, additional medication information, overview of future visits and a reminder of medication intake would be very helpful eHealth features for pwMS, while they themselves preferred features organizing and enriching future visits. (4) Conclusions A closer look at the various profiles of eHealth adoption in pwMS and their caregivers indicated that there is a broad and robust enthusiasm across several subgroups that does not exclude anyone in general, but constitutes specific areas of interest. For pwMS, the focus was on eHealth services that connect previously collected information and make them easily accessible and understandable.(1) The effects of intensive mental training based on meditation on the functional and structural organization of the human brain have been addressed by several neuroscientific studies. However, how large-scale connectivity patterns are affected by long-term practice of the main forms of meditation, Focused Attention (FA) and Open Monitoring (OM), as well as by aging, has not yet been elucidated. (2) Using functional Magnetic Resonance Imaging (fMRI) and multivariate pattern analysis, we investigated the impact of meditation expertise and age on functional connectivity patterns in large-scale brain networks during different meditation styles in long-term meditators. (3) The results show that fMRI connectivity patterns in multiple key brain networks can differentially predict the meditation expertise and age of long-term meditators. Expertise-predictive patterns are differently affected by FA and OM, while age-predictive patterns are not influenced by the meditation form. The FA meditation connectivity pattern modulated by expertise included nodes and connections implicated in focusing, sustaining and monitoring attention, while OM patterns included nodes associated with cognitive control and emotion regulation. (4) The study highlights a long-term effect of meditation practice on multivariate patterns of functional brain connectivity and suggests that meditation expertise is associated with specific neuroplastic changes in connectivity patterns within and between multiple brain networks.Maternal immune activation (MIA) increases the risk of autism spectrum disorder (ASD) in offspring. Microbial dysbiosis is associated with ASD symptoms. However, the alterations in the brain-gut-microbiota axis in lipopolysaccharide (LPS)-induced MIA offspring remain unclear. Here, we examined the social behavior, anxiety-like and repetitive behavior, microbiota profile, and myelination levels in LPS-induced MIA rat offspring. Compared with control offspring, MIA male rat offspring spent less time in an active social interaction with stranger rats, displayed more anxiety-like and repetitive behavior, and had more hypomyelination in the prefrontal cortex and thalamic nucleus. A fecal microbiota analysis revealed that MIA offspring had a higher abundance of Alistipes, Fusobacterium, and Ruminococcus and a lower abundance of Coprococcus, Erysipelotrichaies, and Actinobacteria than control offspring, which is consistent with that of humans with ASD. The least absolute shrinkage and selection operator (LASSO) method was applied to determine the relative importance of the microbiota, which indicated that the abundance of Alistipes and Actinobacteria was the most relevant for the profile of defective social behavior, whereas Fusobacterium and Coprococcus was associated with anxiety-like and repetitive behavior. In summary, LPS-induced MIA offspring showed an abnormal brain-gut-microbiota axis with social behavior deficits, anxiety-like and repetitive behavior, hypomyelination, and an ASD-like microbiota profile.In the present study, we investigated the effects of a four-week working memory (WM) and attention training program using commercial brain training (Synaptikon GmbH, Berlin). Sixty young healthy adults were assigned to the experimental and active control training programs. The training was conducted in a naturalistic home-based setting, while the pre- and post-examinations were conducted in a controlled laboratory setting. Transfer effects to an untrained WM task and to an untrained episodic memory task were examined. Furthermore, possible influences of personality, i.e., the five-factor model (FFM) traits and need for cognition (NFC), on training outcomes were examined. Additionally, the direct relationship between improvement in single trained tasks and improvement in the transfer tasks was investigated. Our results showed that both training groups significantly increased performance in the WM task, but only the WM training group increased their performance in the episodic memory transfer task. One of the training tasks, a visuospatial WM task, was particularly associated with improvement in the episodic memory task. Neuroticism and conscientiousness showed differential effects on the improvement in training and transfer tasks. It needs to be further examined whether these effects represent training effects or, for example, retest/practice or motivation effects.Spinal cord injuries (SCIs) exert devastating effects on body awareness, leading to the disruption of the transmission of sensory and motor inputs. Researchers have attempted to improve perceived body awareness post-SCI by intervening at the multisensory level, with the integration of somatic sensory and motor signals. However, the contributions of interoceptive-visceral inputs, particularly the potential interaction of motor and interoceptive signals, remain largely unaddressed. The present perspective aims to shed light on the use of interoceptive signals as a significant resource for patients with SCI to experience a complete sense of body awareness. First, we describe interoceptive signals as a significant obstacle preventing such patients from experiencing body awareness. Second, we discuss the multi-level mechanisms associated with the homeostatic stability of the body, which creates a unified, coherent experience of one's self and one's body, including real-time updates. Body awareness can be enhanced by targeting the vagus nerve function by, for example, applying transcutaneous vagus nerve stimulation. This perspective offers a potentially useful insight for researchers and healthcare professionals, allowing them to be better equipped in SCI therapy. This will lead to improved sensory motor and interoceptive signals, a decreased likelihood of developing deafferentation pain, and the successful implementation of modern robotic technologies.Functional cognitive disorders (FCD) have become a subject of increasing clinical interest in recent years, in part because of their high prevalence amongst patients attending dedicated memory clinics. Empirical understanding of FCD based on observational studies is growing, suggesting a relationship to other functional neurological disorders (FND) based on shared phenomenology. However, understanding of FCD at the theoretical level has been lacking. One suggestion has been that FCD are disorders of metacognition, most usually of metamemory. In this article, a brief overview of these constructs is presented along with existing evidence for their impairment in FCD. Previous adaptations of theoretical models of FND to accommodate FCD are reviewed. A novel application to FCD of Nelson and Narens' monitoring and control model of metamemory is then attempted, positing an improper setting of the monitoring function, with examples of ecological relevance. Formulation of FCD in light of a metacognitive model of anosognosia is also considered. Although lacking mechanistic and neuroanatomical sophistication, this metacognitive formulation of FCD may give pointers for future hypothesis-driven research and a pragmatic basis for management strategies.Mutations of the SPAST gene that encodes the microtubule-severing enzyme called spastin are the chief cause of Hereditary Spastic Paraplegia. Growing evidence indicates that pathogenic mutations functionally compromise the spastin protein and endow it with toxic gain-of-function properties. With each of these two factors potentially relevant to disease etiology, the present article discusses possible therapeutic strategies that may ameliorate symptoms in patients suffering from SPAST-based Hereditary Spastic Paraplegia, which is usually termed SPG4-HSP.Previous cross-sectional studies have related aerobic fitness to inhibitory control and white matter (WM) microstructure in young adults, but there is no longitudinal study to confirm whether these relationships exist. We carried out a longitudinal study comparing aerobic fitness, inhibitory control, and WM integrity across time points, before versus after completing an exercise intervention in young adults (18-20 years old) relative to a control group. The exercise group (n = 35) participated in a 9-week exercise protocol, while the control group (n = 24) did not receive any regular exercise training. Behavioral data and diffusion tensor imaging (DTI) data were collected prior to and following the intervention. SGI-1776 After the exercise intervention, aerobic fitness and inhibitory control performance were significantly improved for the exercise group, but not for the control group. Analyses of variance (ANOVA) of the DTI data demonstrated significantly increased fractional anisotropy (FA) in the right corticospinal tract and significantly decreased FA in the left superior fronto-occipital fasciculus in the exercise group after the intervention versus before. The enhanced aerobic fitness induced by exercise was associated with better inhibitory control performance in the incongruent condition and lower FA in the Left superior fronto-occipital fasciculus (SFOF). Regression analysis of a mediation model did not support Left SFOF FA as a mediator of the relationship between improvements in aerobic fitness and inhibitory control. The present data provide new evidence of the relationship between exercise-induced changes in aerobic fitness, WM integrity, and inhibitory control in early adulthood. Longer-duration intervention studies with larger study cohorts are needed to confirm and further explore the findings obtained in this study.