Holdenfoster6299
New non-crystallizable low-dispersity star-shaped polydimethylsiloxanes (PDMS) containing stereoregular cis-tetra(organo)(dimethylsiloxy)cyclotetrasiloxanes containing methyl-, tolyl- and phenyl-substituents at silicon atoms and the mixture of four stereoisomers of tetra[phenyl(dimethylsiloxy)]cyclotetrasiloxane as the cores were synthesized. Their thermal and viscous properties were studied. All synthesized compounds were characterized by a complex of physicochemical analysis methods nuclear magnetic resonance (NMR), FT-IR spectroscopy, gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), viscometry in solution, rheometry, and Langmuir trough study.Material extrusion (ME), one of the most widely used additive manufacturing technique, has the advantages of freedom of design, wide range of raw materials, strong ability to manufacture complex products, etc. However, ME products have obvious surface defects due to the layer-by-layer manufacturing characteristics. To reveal the generation mechanism, the three-dimensional surface roughness (3DSR) of ME products was investigated theoretically and experimentally. Based on the forming process of bonding neck, the 3DSR theoretical model in two different directions (vertical and parallel to the fiber direction) was established respectively. The preparation of ME samples was then completed and a series of experimental tests were performed to determine their surface roughness with the laser microscope. Through the comparison between theoretical and experimental results, the proposed model was validated. In addition, sensitivity analysis is implemented onto the proposed model, investigating how layer thickness, extrusion temperature, and extrusion width influence the samples' surface roughness. This study provides theoretical basis and technical insight into improving the surface quality of ME products.The combination of chemotherapy, photothermal therapy (PTT) and photodynamic therapy (PDT) based on a single nanosystem is highly desirable for cancer treatment. In this study, we developed a versatile Pt(IV) prodrug-based nanodrug, PVPt@Cy NPs, to realize synchronous chemotherapy, PDT and PTT and integrate cancer treatment with bioimaging. To construct PVPt@Cy NPs, the amphiphilic Pt(IV)-based polymeric prodrug PVPt was synthesized by a facile one-pot coupling reaction, and then it was used to encapsulate an optotheranostic agent (HOCyOH, Cy) via hydrophobic interaction-induced self-assembly. These NPs would disaggregate under acidic, reductive conditions and NIR irradiation, which are accompanied by photothermal conversion and reactive oxygen species (ROS) generation. Moreover, the PVPt@Cy NPs exhibited an enhanced in vitro anticancer efficiency with 808-nm light irradiation. Furthermore, the PVPt@Cy NPs showed strong NIR fluorescence and photothermal imaging in H22 tumor-bearing mice, allowing the detection of the tumor site and monitoring of the drug biodistribution. Therefore, PVPt@Cy NPs displayed an enormous potential in combined chemo-phototherapy.An automated synthesis protocol is developed for the synthesis of block copolymers in a multi-step approach in a fully automated manner. For this purpose, an automated dialysis setup is combined with robot-based synthesis protocols. Consequently, several block copolymerizations are executed completely automated and compared to the respective manual synthesis. As a result, this study opens up the field of autonomous multi-step reactions without any human interactions.It is clear that viruses, especially COVID-19, can cause infection and injure the human body. These viruses can transfer in different ways, such as in air transfer, which face masks can prevent and reduce. Face masks can protect humans through their filtration function. They include different types and mechanisms of filtration whose performance depends on the texture of the fabric, the latter of which is strongly related to the manufacturing method. Thus, scientists should enrich the information on mask production and quality control by applying a wide variety of tests, such as leakage, dynamic respiratory resistance (DBR), etc. In addition, the primary manufacturing methods (meltblown, spunlaid, drylaid, wetlaid and airlaid) and new additive manufacturing (AM) methods (such as FDM) should be considered. These methods are covered in this study.Reducing friction in the coaxial sealing systems of hydraulic cylinders is one of the solutions for increasing the energy efficiency of industrial actuations. This is a requirement, particularly in the case of small velocities that carry the risk of eigen-vibrations and/or stick-slip. The authors discuss the experimental research conducted on three coaxial sealing systems made from thermoplastic polymer and polyurethane type materials. The paper presents the equipment and method used for the experimental determination of static and kinematic friction coefficients and discusses the subsequent results obtained to test different working parameters. The experimentally determined friction coefficients yielded a range of materials recommended for coaxial seals such as to minimize the occurrence of jerky operation.Modulation of the bio-regenerative characteristics of materials is an indispensable requirement in tissue engineering. Particularly, in bone tissue engineering, the promotion of the osteoconductive phenomenon determines the elemental property of a material be used therapeutically. In addition to the chemical qualities of the constituent materials, the three-dimensional surface structure plays a fundamental role that various methods are expected to modulate in a number of ways, one most promising of which is the use of different types of radiation. In the present manuscript, we demonstrate in a calvarial defect model, that treatment with ultraviolet irradiation allows modification of the osteoconductive characteristics in a biomaterial formed by gelatin and chitosan, together with the inclusion of hydroxyapatite and titanium oxide nanoparticles.The presented work's aim is the application of low-power laser treatment for the enhancement of interfacial micromechanical adhesion between polyamide 6 (filled with glass fiber) and aluminum. A fiber laser beam was used to prepare micro-patterns on aluminum sheets. The micro-structuring was conducted in the regime of 50, 100, 200 and 300 mm/s laser beam speeds, for both sides. The joining process was realized in an injection molding process. Metallic inserts were surface engraved and overmolded in one-side and two-side configurations. A lap shear test was used to examine the strength of the joints. Engraved metallic surfaces and adequate imprints on polyamide side were checked by optical microscope with motorized stages, and roughness parameters were also determined. Microscopic observations made it possible to describe the grooves' shape and to conclude that a huge recast melt was formed when the lowest laser beam speed was applied; thus, the roughness parameter Ra reached the highest value of 16.8 μm (compared to 3.5 μm obtained for the fastest laser speed). The maximum shear force was detected for a sample prepared with the lowest scanning speed (one-sides joints), and it was 883 N, while for two-sided joints, the ultimate force was 1410 N (for a scanning speed of 200 mm/s).In the past decades, cellulose (one of the most important natural polymers), in the form of nanofibers, has received special attention. The nanofibrous morphology may provide exceptional properties to materials due to the high aspect ratio and dimensions in the nanometer range of the nanofibers. The first feature may lead to important consequences in mechanical behavior if there exists a particular orientation of fibers. On the other hand, nano-sizes provide a high surface-to-volume ratio, which can have important consequences on many properties, such as the wettability. There are two basic approaches for cellulose nanofibers preparation. The top-down approach implies the isolation/extraction of cellulose nanofibrils (CNFs) and nanocrystals (CNCs) from a variety of natural resources, whereby dimensions of isolates are limited by the source of cellulose and extraction procedures. The bottom-up approach can be considered in this context as the production of nanofibers using various spinning techniques, resultinon membranes, to biomedical scaffolds.The aim of this work is to develop sustainable reactive polyurethane hot melt adhesives (HMPUR) for footwear applications based on biobased polyols as renewable resources, where ma-croglycol mixtures of polyadipate of 1,4-butanediol, polypropylene and different biobased polyols were employed and further reacted with 4-4'-diphenylmethane diisocyanate. The different reactive polyurethane hot melt adhesives obtained were characterized with different experimental techniques, such as Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), softening temperature and melting viscosity. Finally, their adhesion properties were measured from T-peel tests on leather/HMPUR adhesives/SBR rubber joints in order to establish the viability of the used biobased polyols and the amount of these polyols that could be added to reactive polyurethane hot melt adhesives satisfactorily to meet the quality requirements of footwear joints. All biobased polyols and percentages added to the polyurethane adhesive formulations successfully met the quality requirements of footwear, being comparable to traditional adhesives currently used in footwear joints in terms of final strength. Therefore, these new sustainable polyurethane adhesives can be considered as suitable and sustainable alternatives to the adhesives commonly used in footwear joints.Thermo- and pH-responsive poly(N-[3-(diethylamino)propyl]methacrylamide)s were synthesized by free radical polymerization and RAFT polymerization. The molar masses of the samples were 33,000-35,000 g∙mol-1. Investigations of the dilute solutions showed that the prepared samples were flexible chain polymers. The behavior of the synthesized polymers in the buffer solutions was analyzed by turbidity and light scattering at a pH range of 7-13 and a concentration range of 0.0002-0.008 g·cm-3. When the concentrated solutions were at a low temperature, there were macromolecules and aggregates, which were formed due to the interaction of hydrophobic units. For the investigated samples, the lower critical solution temperatures were equal. The phase separation temperatures decreased as pH increased. The influence of polydispersity index on the characteristics of the samples in the solutions was analyzed. The radii of molecules of poly(N-[3-(diethylamino)propyl]methacrylamide) obtained by RAFT polymerization at this temperature at the onset and end of the phase separation interval were lower than ones for samples synthesized by conventional free radical polymerization.Iodine has been widely used as an effective disinfectant with broad-spectrum antimicrobial potency. However, the application of iodine in an antibacterial polymer remains challenging due to its volatile nature and poor solubility. Herein, iodine immobilized UiO-66-NH2 metal-organic framework (MOF) (UiO66@I2) with a high loading capacity was synthesized and used as an effective antibacterial additive for poly(ε-caprolactone) (PCL). An orthogonal design approach was used to achieve the optimal experiments' conditions in iodine adsorption. UiO66@I2 nanoparticles were added to the PCL matrix under ultrasonic vibration and evaporated the solvent to get a polymer membrane. The composites were characterized by SEM, XRD, FTIR, and static contact angle analysis. UiO-66-NH2 nanoparticles have a high iodine loading capacity, up to 18 wt.%. Volasertib mouse The concentration of iodine is the most important factor in iodine adsorption. Adding 0.5 wt.% or 1.0 wt.% (equivalent iodine content) of UiO66@I2 to the PCL matrix had no influence on the structure of PCL but reduces the static water angle.