Mckinnonhowe1966

Z Iurium Wiki

Verze z 4. 9. 2024, 13:09, kterou vytvořil Mckinnonhowe1966 (diskuse | příspěvky) (Založena nová stránka s textem „Climate change is expected to create novel environments in which extant species cannot persist, therefore leading to the loss of them and their associated…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Climate change is expected to create novel environments in which extant species cannot persist, therefore leading to the loss of them and their associated ecological functions within the ecosystem. However, animals may employ behavioral mechanisms in response to warming that could allow them to maintain their functional roles in an ecosystem despite changed temperatures. Specifically, animals may shift their activity in space or time to make use of thermal heterogeneity on the landscape. Selleck LEE011 However, few studies consider the role of behavioral plasticity and spatial or temporal heterogeneity in mitigating the effects of climate change. We conducted experiments to evaluate the potential importance of behavior in mediating the net effects of warming on white-tailed deer (Odocoileus virginianus). We used shade structures to manipulate the thermal environment around feeding stations to monitor deer feeding activity and measure total consumption. In individual experiments where deer only had access to unshaded feeders, deer fed less during the day but compensated by increasing feeding during times when temperature was lower. In group experiments where deer had access to both shaded and unshaded feeders, deer often fed during the day but disproportionally preferred the cooler, shaded feeders. Our results suggest that deer can capitalize on temporal and spatial heterogeneity in the thermal environment to meet nutritional and thermal requirements, demonstrating the importance of behavioral plasticity when predicting the net effects of climate change. © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.Reproductive interference can shape regional distribution patterns in closely related species, if prezygotic isolation barriers are weak. link2 The study of such interaction could be more challenging in nuptial gift-giving species due to the direct nutritional effects on both sexes of both species during copulation. We mapped the distribution of two sister bush-cricket species, Pholidoptera aptera and Pholidoptera transsylvanica, at the northern margin of their overlapping ranges in Europe, and with a behavioral experiment, we tested the possibility of heterospecific mating. We found a very rare coexistence of species locally (0.5%, n = 391 sites) with mostly mutually exclusive distribution patterns, resulting in a mosaic pattern of sympatry, whereas they occupied the same climate niche in forest-dominated mountain landscape. Over 14 days of a mating experiment with seven mixed groups of conspecifics and heterospecifics (n = 56 individuals in total), the number of received spermatophores per female was 3-6 in P. aptera and 1-7 in P. transsylvanica. In total, we found 8.1% of heterospecific copulations (n = 99 transferred spermatophores with genetic identification of the donor species), while we also confirmed successful transfer of heterospecific sperms into a female's reproductive system. Because bush-cricket females also obtain required nutrition from a heterospecific spermatophylax what should increase their fitness and fecundity, we suggest that their flexibility to mate with heterospecifics is beneficial and drives reproductive interference. This may substantially limit the reproductive success of the less frequent species (P. transsylvanica), coupled with eventual detrimental effects from hybridization, and result in the competitive exclusion of that species from their areas of coexistence. © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.The endosperm cell walls of mature coffee seeds accumulate large amounts of mannan storage polysaccharides, which serve as nutrient reserve for embryo and contribute to beverage quality. Our study investigated the evolutionary patterns of key galactomannan (GM) biosynthesis genes using d N/d S ratio, synteny, and phylogenetic analysis and detected heterogeneity in rate of evolution among gene copies. Selection ratio index revealed evidence of positive selection in the branch editing gene Coffea canephora alpha (α) galactosidase (Cc-alpha Gal) at Cc11_g15950 copy (ω = 1.12), whereas strong purifying selection on deleterious mutations was observed in the Coffea canephora uridine diphosphate (UDP)-glucose 4'-epimerase (Cc-UG4E) and Coffea canephora mannose-1P guanylytransferase (Cc-MGT) genes controlling the crucial nucleotide carbon sugar building blocks flux in the pathway. Relatively low sequence diversity and strong syntenic linkages were detected in all GM pathway genes except in Cc-alpha Gal, which suggests a correlation between selection pressure and nucleotide diversity or synteny analysis. In addition, phylogenetic analysis revealed independent evolution or expansion of GM pathway genes in different plant species, with no obvious inferable clustering patterns according to either gene family or congruent with evolutionary plants lineages tested due to high dynamic nature and specific biochemical cell wall modification requirements. Altogether, our study shows a significant high rate of evolutionary variation among GM pathway genes in the diploid C. canephora and demonstrates the inherent variation in evolution of gene copies and their potential role in understanding selection rates in a homogenously connected metabolic pathway. © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.Understanding the species diversity patterns along elevational gradients is critical for biodiversity conservation in mountainous regions. We examined the elevational patterns of species richness and turnover, and evaluated the effects of spatial and environmental factors on nonvolant small mammals (hereafter "small mammal") predicted a priori by alternative hypotheses (mid-domain effect [MDE], species-area relationship [SAR], energy, environmental stability, and habitat complexity]) proposed to explain the variation of diversity. We designed a standardized sampling scheme to trap small mammals at ten elevational bands across the entire elevational gradient on Yulong Mountain, southwest China. A total of 1,808 small mammals representing 23 species were trapped. We observed the hump-shaped distribution pattern of the overall species richness along elevational gradient. link3 Insectivores, rodents, large-ranged species, and endemic species richness showed the general hump-shaped pattern but peaked at different elevations, whereas the small-ranged species and endemic species favored the decreasing richness pattern. The MDE and the energy hypothesis were supported, whereas little support was found for the SAR, the environmental stability hypothesis, and the habitat complexity. However, the primary driver(s) for richness patterns differed among the partitioning groups, with NDVI (the normalized difference vegetation index) and MDE being the most important variables for the total richness pattern. Species turnover for all small mammal groups increased with elevation, and it supported a decrease in community similarity with elevational distance. Our results emphasized for increased conservation efforts in the higher elevation regions of the Yulong Mountain. © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.Fossil rodent middens are powerful tools in paleoecology. In arid parts of western North America, packrat (Neotoma spp.) middens preserve plant and animal remains for tens of thousands of years. Midden contents are so well preserved that fragments of endogenous ancient DNA (aDNA) can be extracted and analyzed across millennia. Here, we explore the use of shotgun metagenomics to study the aDNA obtained from packrat middens up to 32,000 C14 years old. Eleven Illumina HiSeq 2500 libraries were successfully sequenced, and between 0.11% and 6.7% of reads were classified using Centrifuge against the NCBI "nt" database. Eukaryotic taxa identified belonged primarily to vascular plants with smaller proportions mapping to ascomycete fungi, arthropods, chordates, and nematodes. Plant taxonomic diversity in the middens is shown to change through time and tracks changes in assemblages determined by morphological examination of the plant remains. Amplicon sequencing of ITS2 and rbcL provided minimal data for some middens, but failed at amplifying the highly fragmented DNA present in others. With repeated sampling and deep sequencing, analysis of packrat midden aDNA from well-preserved midden material can provide highly detailed characterizations of past communities of plants, animals, bacteria, and fungi present as trace DNA fossils. The prospects for gaining more paleoecological insights from aDNA for rodent middens will continue to improve with optimization of laboratory methods, decreasing sequencing costs, and increasing computational power. © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.Nest attendance is an important determinant of avian reproductive success, and identifying factors that influence the frequency and duration of incubation recesses furthers our understanding of how incubating birds balance their needs with those of their offspring. We characterized the frequency and timing (start time, end time, and duration) of incubation recesses for mallard (Anas platyrhynchos) and gadwall (Mareca strepera) hens breeding in Suisun Marsh, California, USA, and examined the influences of day of year, ambient temperature at the nest, incubation day, and clutch size on recess frequency and timing using linear mixed models. Mallard, on average, took more recesses per day (1.69 ± 0.80, mean ± standard deviation) than did gadwall (1.39 ± 0.69), and 45% of mallard nest-days were characterized by two recesses, while only 27% of gadwall nest-days were characterized by two recesses. Mallard morning recesses started at 0614 ± 0246 and lasted 106.11 ± 2.01 min, whereas mallard afternoon recesses starteds between 0700 and 1600. Our analyses identified important factors influencing incubation recess timing in dabbling ducks and have important implications for nest monitoring programs. © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd This article has been contributed to by US Government employees and their work is in the public domain in the USA.Reinforcement occurs when selection against hybrid offspring strengthens behavioral isolation between parental species and may be an important factor in speciation. Theoretical models and experimental evidence indicate that both female and male preferences can be strengthened upon secondary contact via reinforcement. However, the question remains whether this process is more likely to affect the preferences of one sex or the other. Males of polygynous species are often predicted to exhibit weaker preferences than females, potentially limiting the ability for reinforcement to shape male preferences. Yet, in darters (Percidae Etheostoma), male preference for conspecific mates appears to arise before female preferences during the early stages of allopatric speciation, and research suggests that male, but not female, preferences become reinforced upon secondary contact. In the current study, we aimed to determine whether the geographically widespread darter species Etheostoma zonale exhibits a signature of reinforcement, by comparing the strength of preference for conspecific mates between populations that are sympatric and allopatric with respect to a close congener, E.

Autoři článku: Mckinnonhowe1966 (Clancy Boje)