Tannerbruce0527

Z Iurium Wiki

Verze z 3. 9. 2024, 21:52, kterou vytvořil Tannerbruce0527 (diskuse | příspěvky) (Založena nová stránka s textem „The analysis of the similarity of the previously reported Ca9La(GeO4)0.75(PO4)6 compound reveals an unexpectedly high value. The same structural similarity…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The analysis of the similarity of the previously reported Ca9La(GeO4)0.75(PO4)6 compound reveals an unexpectedly high value. The same structural similarity evaluation of the studied compound Ca8.1EuZn(PO4)6.8(GeO4)0.2 in the present work with the initial model gives a very small value, which indicates a good match between the initial and under-consideration structures. The luminescence properties of Eu3+ were investigated from the point of view of crystal structures and anionic substitutions. The integral intensity increased linearly with the [PO4]3- → [GeO4]4- substitution. It can be concluded that the anionic substitution on Ge4+ can improve the luminescence characteristics. The present study includes new data on the anionic substitution based on accurate crystal structure refinement.Electrolysis of water to produce green and renewable hydrogen fuel is of great interest in the clean energy field. Water molecules can be decomposed to hydrogen and oxygen through catalysis. Catalytic materials under electrochemical operation are subject to harsh chemical environments, and as a result mechanical changes may appear in the material. In two dimensional materials, the weak van der Waals (vdW) forces holding the layers together may cause a change in the stacking order of the material. The big challenge is to understand the effect of the interlayer arrangements of two dimensional materials on their catalytic performance. In this research we use Density Functional Theory in order to explore the catalytic performance of β-NiOOH, a two dimensional material that is one of the best known catalysts for the oxygen evolution reaction (OER), under different displacements. Our results indicate that changes in the structural stacking of NiOOH could affect the catalytic properties of the system. Particularly, we find that small shifts between the layers enhance the OER activity by reducing the overpotential down to 240 [mV] due to the formation of an unstable state and the formation of new vdW bonds between the layers. The potential ability to lower the overpotential of NiOOH could give exceptional results in increasing the efficiency of the OER.Valence band dispersions of single-crystalline SnS1-xSex solid solutions were observed by angle-resolved photoemission spectroscopy (ARPES). The hole effective masses, crucial factors in determining thermoelectric properties, were directly evaluated. They decrease slightly with increasing Se content in the low Se composition range but sharply in the high Se composition range.The gas-phase reaction of the methylidyne (CH; X2Π) radical with dimethylacetylene (CH3CCCH3; X1A1g) was studied at a collision energy of 20.6 kJ mol-1 under single collision conditions with experimental results merged with ab initio calculations of the potential energy surface (PES) and ab initio molecule dynamics (AIMD) simulations. The crossed molecular beam experiment reveals that the reaction proceeds barrierless via indirect scattering dynamics through long-lived C5H7 reaction intermediate(s) ultimately dissociating to C5H6 isomers along with atomic hydrogen with atomic hydrogen predominantly released from the methyl groups as verified by replacing the methylidyne with the D1-methylidyne reactant. AIMD simulations reveal that the reaction dynamics are statistical leading predominantly to p28 (1-methyl-3-methylenecyclopropene, 13%) and p8 (1-penten-3-yne, 81%) plus atomic hydrogen with a significant amount of available energy being channeled into the internal excitation of the polyatomic reaction products. The dynamics are controlled by addition to the carbon-carbon triple bond with the reaction intermediates eventually eliminating a hydrogen atom from the methyl groups of the dimethylacetylene reactant forming 1-methyl-3-methylenecyclopropene (p28). The dominating pathways reveal an unexpected insertion of methylidyne into one of the six carbon-hydrogen single bonds of the methyl groups of dimethylacetylene leading to the acyclic intermediate, which then decomposes to 1-penten-3-yne (p8). selleckchem Therefore, the methyl groups of dimethylacetylene effectively 'screen' the carbon-carbon triple bond from being attacked by addition thus directing the dynamics to an insertion process as seen exclusively in the reaction of methylidyne with ethane (C2H6) forming propylene (CH3C2H3). Therefore, driven by the screening of the triple bond, one propynyl moiety (CH3CC) acts in four out of five trajectories as a spectator thus driving an unexpected, but dominating chemistry in analogy to the methylidyne - ethane system.From X-ray absorption spectroscopy (XAS) and X-ray photoemission spectroscopy (XPS), it is evident that the spin state transition behavior of Fe(II) spin crossover coordination polymer crystallites at the surface differs from the bulk. A comparison of four different coordination polymers reveals that the observed surface properties may differ from bulk for a variety of reasons. There are Fe(II) spin crossover coordination polymers with either almost complete switching of the spin state at the surface or no switching at all. Oxidation, differences in surface packing, and changes in coordination could all contribute to making the surface very different from the bulk. Some Fe(II) spin crossover coordination polymers may be sufficiently photoactive so that X-ray spectroscopies cannot discern the spin state transition.Significant efforts have been directed towards the use of transition metal nitrides as electrocatalysts for the hydrogen evolution reaction (HER). Molybdenum nitride, despite its potential for scalable production, suffers from the bottleneck of poor catalytic activity. Furthermore the kinetics of the water dissociation process ought to be improved for enhancing its potential. Here, we report a facile method for the incorporation of a trace amount of Pd nanoparticles into Mo3N2 nanobelts (0.75 Pd/Mo3N2) for an enhanced HER in both acidic and alkaline solutions. When employed for the HER, the 0.75 wt% Pd/Mo3N2 nanobelt delivers excellent catalytic activity with overpotentials of 45 and 65 mV in 0.5 M H2SO4 and 1 M KOH at a current density of 10 mA cm-2. As-prepared 0.75 wt% Pd/Mo3N2 displays a smaller Tafel slope and offers substantial stability in both acidic and alkaline media under the same operating conditions. The improved performance of the as-prepared 0.75 wt% Pd/Mo3N2 points to fast charge transfer, higher electrical conductivity and synergistic effects between Pd and Mo. This work displays a direct method for reducing the use and cost associated with the use of platinum-group metals while also delivering superior HER catalytic performance.Nanoscale titanium carbide (TiC) is widely used in composites and energy applications. In order to design and optimize these systems and to gain a fundamental understanding of these nanomaterials, it is important to understand the atomistic structure of nano-TiC. Cluster beam experiments have provided detailed infrared vibrational spectra of numerous TixCy nanoparticles with well defined masses. However, these spectra have yet to be convincingly assigned to TixCy nanoparticle structures. Herein, using accurate density functional theory based calculations, we perform a systematic survey of likely candidate nanoparticle structures with masses corresponding to those in experiment. We calculate harmonic infrared vibrational spectra for a range of nanoparticles up to 100 atoms in size, with a focus on systems based on removing either four carbon atoms or a single titanium atom from rocksalt-structured stoichiometric TiC nanoparticles. Our calculations clearly show that Ti-deficient nanoparticles are unlikely candidates to explain the experimental spectra as such structures are highly susceptible to C-C bonding, whose characteristic frequencies are not observed in experiment. However, our calculated infrared spectra for C-deficient nanoparticles have some matching features with the experimental spectra but tend to have more complex infrared spectra with more peaks than those obtained from experiment. We suggest that the discrepancy between experiment and theory may be largely due to thermally induced anharmonicities and broadening in the latter nanoparticles, which are not be accounted for in harmonic vibrational calculations.We developed a numerical procedure to compute the electronic temperature and the effective (local) chemical potential undergone by electrons belonging to a particular molecular species. Our strategy relies on consider atomic basins as open quantum (sub)systems within the context of the quantum theory of atoms in molecules. Each basin is represented by the two parameters, the electronic temperature and the effective chemical potential, which are determined by distributing electrons (fermions) imbedded in each atomic region, through a Fermi-Dirac semi-local variational procedure. The results obtained for 40 different chemical species show that the effective chemical potential is a useful tool to reveal the most acidic/basic atoms in a molecule while the electronic temperature is closely related to the concept of chemical hardness at the local level. Our numerical data also indicate that the electronic temperature values undergone by electrons imbedded in atomic basins are way beyond the room temperature condition, allowing to fractionally occupy several of the one-particle quantum states. In this context, we developed two new indexes useful to reveal outstanding orbitals involved in the chemical reactivity of atoms in molecules.In this study, a simple, fast, one-pot approach for the isolation of nanowires (NWs) in coordination chemistry is reported. Nanowires (NWs) of spin-crossover (SCO) materials are extremely rare. Here, an innovative and easy synthetic process was developed to prepare NWs of a switchable polymorph of the known complex trans-[Fe(NCS)2(abpt)2] using a wet-chemistry approach for the first time; abpt is the bidentate chelating ligand 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole. The remarkable smoothness of the high-spin to low-spin transition, monitored through variable-temperature (300-80 K) Raman microscopy, compared with the sharp transition exhibited by the polycrystalline material, demonstrates the effect of the topological properties on the physical phenomena of the system.Robust and color-tunable afterglows are readily achieved from guanidine derivatives, i.e. dicyandiamide and glycocyamine, through the synergistic interplay between the clustering of electron-rich units and effective hydrogen bonding.A palladium-catalyzed stereoselective synthesis of alkenyl boronates from N-methyliminodiacetyl boronate (BMIDA)-substituted N-tosylhydrazone and benzyl bromides is developed. A range of trans-alkenyl MIDA boronates as single stereoisomers were obtained in moderate yields with good functional group compatibility. The resultant boronate products may be transformed to other boron-containing compounds and may also be directly used in cross-coupling reactions.A metallohydrogel (STG)-based mixed conductive electrochemical semiconductor has been obtained via LiOH-deprotonation of a pre-gelator (H4STL) followed by treatment with Cd(OAc)2. The gelation mechanism of STG, its mixed ionic-electronic conductive nature and application towards an electrochemical semiconductor were well explored by using various techniques including EIS studies.

Autoři článku: Tannerbruce0527 (Palmer Wilkins)