Kahncollins2811

Z Iurium Wiki

Verze z 31. 8. 2024, 14:51, kterou vytvořil Kahncollins2811 (diskuse | příspěvky) (Založena nová stránka s textem „roximity, physical contact, and grooming, and sex biases in these behavioral patterns may contribute to the observed sex bias in social transmission of gut…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

roximity, physical contact, and grooming, and sex biases in these behavioral patterns may contribute to the observed sex bias in social transmission of gut microbiomes. Copyright © 2020 Zhu et al.Cross-sectional studies conducted with obese and control subjects have suggested associations between gut microbiota alterations and obesity, but the links with specific disease phenotypes and proofs of causality are still scarce. The present study aimed to profile the gut microbiota of lean and obese children with and without insulin resistance to characterize associations with specific obesity-related complications and understand the role played in metabolic inflammation. Through massive sequencing of 16S rRNA gene amplicons and data analysis using a novel permutation approach, we have detected decreased incidence of Blautia species, especially Blautia luti and B. wexlerae, in the gut microbiota of obese children, which was even more pronounced in cases with both obesity and insulin resistance. There was also a parallel increase in proinflammatory cytokines and chemokines (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], and monocyte chemoattractant protein 1 [MCP-1]) in feces of obese childreesign of microbiota-based strategies for the early prevention of obesity-related complications. Copyright © 2020 Benítez-Páez et al.The Chinese alcoholic beverage strong-flavor baijiu (SFB) gets its characteristic flavor during fermentation in cellars lined with pit mud. Microbes in the pit mud produce key precursors of flavor esters. The maturation time of natural pit mud of over 20 years has promoted attempts to produce artificial pit mud (APM) with a shorter maturation time. However, knowledge about the molecular basis of APM microbial dynamics and associated functional variation during SFB brewing is limited, and the role of this variability in high-quality SFB production remains poorly understood. We studied APM maturation in new cellars until the fourth brewing batch using 16S rRNA gene amplicon sequencing, quantitative PCR, metaproteomics, and metabolomics techniques. A total of 36 prokaryotic classes and 195 genera were detected. Bacilli and Clostridia dominated consistently, and the relative abundance of Bacilli decreased along with the APM maturation. Even though both amplicon sequencing and quantitative PCR showed increased abuthe mechanisms driving APM prokaryotic taxonomic and functional dynamics and into how this variation is connected with high-quality SFB production, we performed the first combined metagenomic, metaproteomic, and metabolomic analyses of this brewing microecosystem. Together, the multi-omics approach enabled us to develop a more complete picture of the changing metabolic processes occurring in APM microbial communities during high-quality SFB production, which will be helpful for further optimization of APM culture technique and improvement of SFB quality. Copyright © 2020 Liu et al.Genomics-based population analysis of multidrug-resistant (MDR) Klebsiella pneumoniae motivated a renewed interest on the capsule as an evolutionary and virulence marker of clinically relevant strains. Whole-genome sequencing (WGS)-based approaches have provided great insights into the genetic variability of the capsular locus, but genotypic-biochemical capsular (K)-type correlations are lacking, hindering the establishment of a reliable framework for K-type characterization and typing. To fill this gap, we combined molecular, comparative genomics, and multivariate data analysis tools with biochemical data on the capsular locus to support the usefulness of Fourier transform infrared (FT-IR) spectroscopy as a reliable K typing tool. To validate our approach, we used a representative collection of well-defined MDR K. pneumoniae lineages involved in local or nationwide epidemics in multiple countries. With this, we demonstrate a high accuracy and resolution of our FT-IR-based spectroscopy approach for K-type disogenicity and evolutionary markers, such as the capsular locus. However, this information and WGS are still far from being accessible and translated into routine clinical microbiology laboratories as quick and cost-efficient strain diagnostic tools. Here, we propose a biochemical fingerprinting approach based on Fourier transform infrared spectroscopy (FT-IR) and multivariate data analysis tools for K. pneumoniae capsular typing that, because of its high resolution, speed, and low cost, can be an asset to provide enough information to support real-time epidemiology and infection control decisions. Besides, it provides a simple framework for phenotypic/biochemical validation of K. pneumoniae capsular diversity. Copyright © 2020 Rodrigues et al.The gut microbiome of long-lived people display an increasing abundance of subdominant species, as well as a rearrangement in health-associated bacteria, but less is known about microbiome functions. In order to disentangle the contribution of the gut microbiome to the complex trait of human longevity, we here describe the metagenomic change of the human gut microbiome along with aging in subjects with up to extreme longevity, including centenarians (aged 99 to 104 years) and semisupercentenarians (aged 105 to 109 years), i.e., demographically very uncommon subjects who reach the extreme limit of the human life span. According to our findings, the gut microbiome of centenarians and semisupercentenarians is more suited for xenobiotic degradation and shows a rearrangement in metabolic pathways related to carbohydrate, amino acid, and lipid metabolism. Sodium L-lactate chemical structure Collectively, our data go beyond the relationship between intestinal bacteria and physiological changes that occur with aging by detailing the shifts in the potene-related increase in degradation pathways of pervasive xenobiotics in Western societies, possibly as a result of a supportive process within the molecular continuum characterizing aging. Copyright © 2020 Rampelli et al.Women with gestational diabetes mellitus (GDM) have different gut microbiota in late pregnancy compared to women without GDM. It remains unclear whether alterations of gut microbiota can be identified prior to the diagnosis of GDM. This study characterized dynamic changes of gut microbiota from the first trimester (T1) to the second trimester (T2) and evaluated their relationship with later development of GDM. Compared with the control group (n = 103), the GDM group (n = 31) exhibited distinct dynamics of gut microbiota, evidenced by taxonomic, functional, and structural shifts from T1 to T2. Linear discriminant analysis (LDA) revealed that there were 10 taxa in T1 and 7 in T2 that differed in relative abundance between the GDM and control groups, including a consistent decrease in the levels of Coprococcus and Streptococcus in the GDM group. While the normoglycemic women exhibited substantial variations of gut microbiota from T1 to T2, their GDM-developing counterparts exhibited clearly reduced inter-time point shifts, as corroborated by the results of Wilcoxon signed-rank test and balance tree analysis.

Autoři článku: Kahncollins2811 (Rafferty Martens)