Fryspivey3702
Research on childhood victimization of individuals involved in online sexual offending during adulthood is scarce. Studies focusing on adverse childhood of individuals involved in offline child abuse suggested that childhood trauma was associated with an increased probability of sexual offending during adulthood.
The purpose of this study is to explore the role that childhood victimization may have in the development of risk factors that increase the likelihood of being involved in online sexual offending.
This comparative study analyzed the characteristics of 127 individuals involved in online sexual offending who did not experience childhood victimization and 77 individuals involved in online sexual offending who experienced childhood victimization.
Bivariate and regression analyses were conducted to identify variables associated with the presence of victimization and polyvictimization during childhood. Next, structural equation modeling analysis was used to identify the direct and indirect relationrect consequences of childhood trauma.
Research on the experiences of LGBTQIA+ youth in out-of-home care has mainly focused on these youth's adversities and the resulting negative impact on their wellbeing. Little is known about the ways through which LGBTQIA+ youth in out-of-home care are resilient to these adversities. To date, a review study on resilience in this population is lacking.
To map and synthesize the existing research on resilience among LGBTQIA+ children and youth in out-of-home care. Specific goals were to summarize and analyze 1) the general characteristics of the existing studies, and 2) the resilience resources found at the individual, relational, sociocultural, and ecological levels.
We carried out a scoping review examining empirical published academic literature.
The 14 studies included in this scoping review indicated that resilience studies among LGBTQIA+ youth in out-of-home care are mainly qualitative, cross-sectional, US-based, and were centered on gay youth. Studies suggested that resilience resources were mostly focused at the socio/relational level (e.g., foster family acceptance) with fewer studies at the individual (e.g., LGBTQ positive identity), and community levels (e.g., LGBTQ centers). Importantly, no studies explored the interaction of resilience resources across these different domains.
Resilience among LGBTQIA+ youth in out-of-home care remains understudied and the results of this scoping review point to specific research gaps. Recommendations are provided for research, practice, and policy.
Resilience among LGBTQIA+ youth in out-of-home care remains understudied and the results of this scoping review point to specific research gaps. Recommendations are provided for research, practice, and policy.Ammonia recovery from centrate of an anaerobic digester was investigated using an onsite bipolar-electrodialysis (BP-ED) pilot scale plant coupled to two liquid/liquid membrane contactor (LLMC) modules. To investigate the process performance and robustness, the pilot plant was operated at varying current densities, load ratio (current to nitrogen loading), and in continuous and intermittent current (Donnan) mode. A higher load ratio led to higher total ammonium nitrogen (TAN, sum of ammonia and ammonium) removal efficiency, whereas the increase in the applied current did not have a significant impact the TAN removal efficiency. Continuous current application resulted in the higher TAN removal compared with the Donnan dialysis mode. The lowest specific energy consumption of 6.3 kWh kgN-1 was recorded in the Donnan mode, with the load ratio of 1.4, at 200 L h-1 flowrate and current density of 75 A m-2. Lower energy demand observed in the Donnan mode was likely due to the lower scaling and fouling of the ion exchange membranes. Nevertheless, scaling and fouling limited the operation of the BP-ED stack in all operational modes, which had to be interrupted by the daily cleaning procedures. The LLMC module enabled a highly selective recovery of ammonia as ammonium sulfate ((NH4)2SO4), with the concentration of ammonia ranging from 19 to 33 gN L-1. However, the analysis of per- and polyfluoroalkyl substances (PFASs) in the obtained (NH4)2SO4 product revealed the presence of 212-253 ng L-1 of 62 fluorotelomer sulfonate (FTS), a common substitute of legacy PFAS. Given the very low concentrations of 62 FTS (i.e., less then 2 ng L-1) encountered in the concentrated stream, 62 FTS was likely released from the Teflon-based components in the sulfuric acid dosage line. Thus, careful selection of the pilot plant tubing, pumps and other components is required to avoid any risks associated with the PFAS presence and ensure safe use of the final product as fertilizer.Coastal wetland reclamation contributed to development of aquaculture industry, and the residual bait accumulation in aquaculture processes could influence biogeochemical elements cycling, which threaten ecological functions and services in aquaculture and adjacent ecosystems. However, systematic studies for changes in sediment microbial community structure and greenhouse gasses (GHGs) production, as well as environmental parameters following bait input at time scale are still rare. A 90-day incubation experiment was conducted using sediment collected from coastal wetland in Qi'ao Island in southern China, followed by the observations of temporal variations of physicochemical properties, sediment microbial community, and GHGs production in response to different amounts of bait input (0, 20, and 40 mg bait g-1 wet sediment). The results showed that dissolved oxygen of overlying water was profoundly decreased owing to bait input, while dissolved organic carbon of overlying water and several sediment properties ties and emphasize the necessity of sustainable assessment and management in aquaculture ecosystems.Rapid urbanization, industrialization and population growth have accelerated the amount and variety of emerging contaminants being released into the aqueous environment, including endocrine-disrupting compounds (EDCs). The introduction of these compounds constitutes a threat to human health and the environment, even at trace levels. Hence, new water treatment technologies are urgently required to effectively remove EDCs from water. The currently available technologies used in water remediation processes are expensive and ineffective, and some produce harmful by-products. Calcium-based metal-organic frameworks (Ca-MOFs) are porous synthetic materials that can potentially be applied as adsorbents. These MOFs are hydrolytically stable, biocompatible and low-cost compared with conventional porous materials. The structure of Ca-MOFs is maintained even though calcium metal centers in the structure can easily coordinate with water. Ca-MOFs and their composite derivatives have the potential for use in water purification because these biocompatible adsorbents have been shown to selectively extract a significant quantity of contaminants. This review highlights the potential of Ca-MOFs to adsorb EDCs from aqueous environments and discusses adsorbent preparation methods, adsorption mechanisms, removal capacity, water stability and recyclability. This review will support future efforts in synthesizing new biocompatible MOFs as an environmental treatment technology that can effectively remove EDCs from water, thereby improving environmental and human health.Adenoviruses are known to be one of the most resistant viruses to UV disinfection. This study determined the inactivation kinetics of adenovirus freshly isolated from sewage samples, and compared the results with reference adenovirus stocks grown in the laboratory. Human adenoviruses were isolated from sewage samples using the HEK 293 cell line. Inactivation kinetics for UV irradiation was determined for monochromatic low pressure (LP) mercury UV lamp (254 nm) and polychromatic medium pressure (MP) mercury UV lamp for each sewage isolate. Eleven (11) isolates were obtained from nine (9) different sewage samples with most isolates belonging to the enteric adenovirus group, specifically adenovirus 41. The average dose required for 4 log inactivation using LP UV lamps for sewage isolates (220 mJ/cm2) was not significantly different (p > 0.1) from the average dose reported for lab-grown enteric adenovirus (179.6 mJ/cm2). Interestingly, the average dose required for 4 log inactivation using MP UV lamps was significantly higher (p = 0.004) for sewage isolates (124 mJ/cm2) when compared to the average dose reported for laboratory stocks of adenovirus 40 and 41 (71 mJ/cm2). Viral capsid analysis using the propidium monoazide (PMA)-qPCR method showed that adenovirus isolates from group F were less affected by exposure to MP UV Lamps than adenoviruses from group D and C. Adenovirus isolates obtained from sewage samples showed greater resistance to UV irradiation compared to laboratory grown strains, although required doses for MP UV were still considerably lower than LP UV. These data suggest that the required fluence for inactivation of adenoviruses in real-world waters may be higher than previously understood.Human astrovirus (HAstV) composes of classic HAstV serotypes 1-8 and recently discovered novel HAstV-MLB and HAstV-VA strains. A number of studies have demonstrated that wastewater analysis is an effective approach to understand the prevalence and diversity of enteric viruses in local population. However, a comprehensive analysis of classic and novel HAstVs in sewage is still lacking. Selleck mTOR inhibitor In this study, sewage samples were collected monthly from Jinan, China during 2018-2019. Quantification of HAstV genomes was performed by real-time quantitative PCR. Different from previous studies which focused on partial ORF1b or ORF2 gene, complete ORF2 region of HAstV was amplified from sewage concentrates, and amplicons were subjected to next generation sequencing (NGS) and genetic analysis. This methodology allowed detection of 18 astroviruses, of which 7 (HAstV-1, -2, -4, -5, VA1, VA2, and VA3) were detected in all sewage samples. A new strain VA6 mapped to the HMO clade was identified in 20.8% of samples, with 82.4%-83.3% nucleotide identities to the closest strain VA5. The viral load of classic, MLB and VA clades in sewage samples ranged from 3.7 × 104 to 4.6 × 107, 3.4 × 104 to 3.9 × 106, and 3.3 × 104 to 4.1 × 106 copies per liter, respectively. Phylogenetic analysis based on complete ORF2 region reflected local HAstVs within each genotype constituted multiple co-circulating lineages. Existence of several new lineages composed exclusively or predominantly of Chinese sequences was observed as well. These results demonstrate sewage contains astroviruses with considerable high diversities. NGS based environmental surveillance greatly improves the understanding of HAstV circulation and should be encouraged.Decentralized treatment of human urine in sparsely populated regions could avoid the problem of sewage collection in traditionally centralized treatment schemes and simultaneously utilize the recovered N/P fertilizer in-situ to nurture gardens. Herein, an integrated electrochemical fixed bed packed with divided magnesite and carbon zones was constructed for the pretreatment of human urine, followed by the recovery of 95.0% NH4+ and 85.8% PO43- via struvite precipitation and NH3 volatilization as well as the on-site employment of the produced struvite as fertilizer. In the process, the acid/base zones created by electrochemical water splitting dissolved the magnesite filler as the Mg2+ source of struvite, further creating an ideal pH environment for struvite precipitation and NH3 volatilization in the effluent. Without the need to control solution pH by chemical addition, the system can resist impacts from changes in water quality by adjustment of the current density and flow rate, indicating its great potential for automatic operation.