Oneilwolff4722

Z Iurium Wiki

Verze z 29. 8. 2024, 19:32, kterou vytvořil Oneilwolff4722 (diskuse | příspěvky) (Založena nová stránka s textem „Aluminum (Al) toxicity limits crops growth and production in acidic soils. Compared to roots, less is known about the toxic effects of Al in leaves. Al sub…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Aluminum (Al) toxicity limits crops growth and production in acidic soils. Compared to roots, less is known about the toxic effects of Al in leaves. Al subcellular compartmentalization is also largely unknown. Using rye (Secale cereale L.) Beira (more tolerant) and RioDeva (more sensitive to Al) genotypes, we evaluated the patterns of Al accumulation in leaf cell organelles and the photosynthetic and metabolic changes to cope with Al toxicity. The tolerant genotype accumulated less Al in all organelles, except the vacuoles. This suggests that Al compartmentalization plays a role in Al tolerance of Beira genotype. PSII efficiency, stomatal conductance, pigment biosynthesis, and photosynthesis metabolism were less affected in the tolerant genotype. In the Calvin cycle, carboxylation was compromised by Al exposure in the tolerant genotype. Other Calvin cycle-related enzymes, phoshoglycerate kinase (PGK), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), triose-phosphate isomerase (TPI), and fructose 1,6-bisphosphatase (FBPase) activities decreased in the sensitive line after 48 h of Al exposure. Consequentially, carbohydrate and organic acid metabolism were affected in a genotype-specific manner, where sugar levels increased only in the tolerant genotype. In conclusion, Al transport to the leaf and compartmentalization in the vacuoles tolerant genotype's leaf cells provide complementary mechanisms of Al tolerance, protecting the photosynthetic apparatus and thereby sustaining growth.Hypertension is a leading risk factor for disease burden, with more than 200 million disability-adjusted life-years attributed to high blood pressure in 2015. While outdoor air pollution is associated with cardiovascular disease, the joint effect of exposure to air pollution from combustion products on hypertension has rarely been studied. We conducted a cross-sectional analysis to explore the association between combustion-related air pollution and hypertension. Census-tract levels of ambient concentrations of nine fossil-fuel and combustion-related air toxics (biphenyl, naphthalene, polycyclic organic matter, diesel emissions, 1,3-butadiene, acetaldehyde, benzene, acrolein, and formaldehyde) from the 2005 National Air Toxics Assessment database and NO2 from 2005 monitoring data were linked to baseline residential addresses of 47,467 women in the Sister Study cohort. Hypertension at enrollment (2003-2009) was defined as high systolic (≥140 mm Hg) or diastolic (≥90 mm Hg) blood pressure or taking antihypertenor hypertension.Cyanobacterial bloom challenges the aquatic ecosystem and ecological restoration is an effective approach for cyanobacterial bloom control, but the change of aquatic community after ecological restoration is still unclear. Dianchi Lake is an eutrophic lake with frequent cyanobacterial blooms in China, and recent ecological restoration projects in Caohai (north part) have a satisfactory performance. In this study, we collected 249 water samples at 23 sites from Dianchi Lake to explore the relationships between water physicochemical variables and aquatic microbial communities. Water physicochemical variables in Waihai (south part) intensively changed along time, whereas those in Caohai did not. Photoautotrophic communities were significantly divergent between Caohai and Waihai. Waihai had a lower diversity of photoautotrophic community, containing higher abundance of Cyanophyceae (89.9%) than Caohai (42.7%). Nutrient level and Cyanophyceae only exhibited strong correlations in Wahai (p 90% for photoautotrophs), and particularly in Caohai. Our results unraveled that the structure and assembly of bacterial and photoautotrophic communities significantly changed after ecological restoration, offering valuable suggestions that photosynthetic diversity should be focused for other ecological restoration projects.Atmospheric PM2.5 poses a variety of health and environmental risks to urban environments. Ammonium is one of the main components of PM2.5, and its role in PM2.5 pollution will likely increase in the coming years as NH3 emissions are still unregulated and rising in many cities worldwide. However, partitioning urban NH4+ sources remains challenging. Although the 15N natural abundance (δ15N) analysis is a promising approach for this purpose, it has seldom been applied across multiple cities within a given region. This limits our understanding of the regional patterns and controls of NH4+ sources in urban environments. Here, we collected PM2.5 samples using an active sampling technique during winter at six cities in the North China Plain to characterize the concentrations, δ15N and sources of NH4+ in PM2.5. We found substantial variations in both the concentrations and δ15N of NH4+ among the sites. The mean NH4+ concentrations across the six cities ranged from 3.6 to 12.1 μg m-3 on polluted days and from 0.9 to 10.6 μg m-3 on non-polluted days. The δ15N ranged from 6.5‰ to 13.9‰ on polluted days and from 8.7‰ to 13.5‰ on non-polluted days. The δ15N decreased with increasing NH4+ concentrations at all six sites. We found that non-agricultural sources (vehicle exhaust, ammonia slip and urban wastes) contributed 72%-94% and 56%-86% of the NH4+ on polluted and non-polluted days, respectively, and that during polluted days, combustion-related emissions (vehicle exhaust and ammonia slip) were positively associated with the proportion of urban area, population density and number of vehicles, highlighting the importance of local sources of particulate pollution. This study suggests that the analysis of 15N in aerosol NH4+ is a promising approach for apportioning atmospheric NH3 sources over a large region, and this approach has potential for mapping rapidly and precisely the sources of NH3 emissions.The Arctic is a sink for major pollutants in the Northern Hemisphere, and is an ideal place to investigate the migration of concerned metals on the local environment. In this study, 13 elements including Li, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, As, Cd, Hg, and Pb were determined in mosses (Dicranum angustum) from London Island in Ny-Ålesund. The results showed that the concentrations of different elements varied greatly at different altitudes, while their distributions in low (0-200 m) and high (200-300 m) altitudes based on cluster analysis were significantly different. Among them, Li, Ti, V, Cr, Mn, Fe, Co, Cu, and As showed significant positive correlations with elevation. This result may be due to the influence of key environmental factors such as elements transported by the airborne dust carried by winds, and surface runoff from snow meltwater. Multiple receptor models (PCA, PMF, and UNMIX) were employed to discuss the sources of metals in mosses from London Island. Elements that showed positive correlation with altitude were attributed to natural sources, and Zn, Cd, Hg, and Pb, which lacked apparent correlation with elevation, were interpreted as from anthropogenic sources by the models. Among them, Zn, Cd, and Hg were from long-range deposition, while Pb was from mixed industrial sources.Exposure to endocrine-disrupting chemicals (EDCs) play a role in the etiology of obesity and dyslipidemia. However, few studies have analyzed the combined effects of EDC mixtures. This study explored the association between concurrent exposure to EDCs and obesity or dyslipidemia in children, adolescents, and adults. A total of 1454 children, 891 adolescents, and 3758 (for BMI) and 3424 (for TG/HDL) adults from the Korean National Environmental Health Survey 2015 to 2017 were included in this cross-sectional study. Urinary concentrations of eight phthalate metabolites, three phenols, three parabens, and one pyrethroid pesticides metabolite were quantified. Body mass index (BMI) was measured for all participants, and triglyceride (TG) and high-density lipoprotein cholesterol (HDL-c) levels were measured for adolescents and adults. Associations between combined EDC mixtures with the BMI and TG to HDL-c ratio were evaluated using Bayesian Kernel Machine Regression (BKMR). In all age groups, most of the chemical exposures, with the exception of BPF and BPS, were detected in more than 90% of participants. There were significant moderate to high correlations within phthalate metabolites and a high correlation within parabens. The BKMR showed that EDC mixtures were associated with higher BMI in both adolescents and adults, with greater significance in adults compared with adolescents, and a higher TG/HDL in male adolescents. In adolescents, MEP and MCPP drove the main effects on BMI and TG/HDL, respectively. In adults, 3PBA and BPA drove the main effects on BMI. The findings of this study suggest that exposure to EDC mixtures is associated with higher BMI and TG/HDL, and adolescence may be a critical period for EDC mixture in terms of both outcomes. Further studies are needed, but strategies to reduce EDC exposure from early life stages may be necessary to lower the risk of metabolic disease.With the wide application as an alternative for perfluorooctane sulfonate (PFOS), perfluorobutane sulfonate (PFBS) has been frequently detected in the aquatic environment. However, the aquatic toxicity of PFBS is still poorly understood. The present work studied the aquatic toxicity of PFBS using freshwater algae Scenedesmus obliquus (S. obliquus) as indicator, and the toxicity of PFOS was also examined for comparison. The results showed that PFBS exhibited much lower toxicity to S. obliquus than PFOS. The EC50 value was higher than 1800 mg L-1 after 7 days of exposure to PFBS. By contrast, a much lower EC50 value of 136.69 mg L-1 was obtained for PFOS. Photosynthetic efficiency analyzed by chlorophyll fluorescence also verified that PFOS induced a higher toxic effect on the algae than PFBS. The malondialdehyde, catalase and superoxide dismutase results indicate that PFOS exposure led to the accumulation of ROS, which caused oxidative damage to the algae, thereby resulting in the inhibition in the growth and photosynthesis of the algae. Furthermore, transcriptome analysis indicates that the significant down-regulation of key genes related to photosynthesis induced by PFOS was the fundamental mechanism for the inhibition in photosynthetic efficiency and biomass growth of S. obliquus.Many environmental phenols, such as bisphenols, benzophenones and parabens, are known as endocrine disruptors and can adversely affect human health. However, the knowledge of human exposure to common environmental phenols in Chinese rural areas is insufficient. In this context, 181 urine samples were collected from participants in a rural area in Northwest China and were analyzed for nine bisphenols, three benzophenones and four parabens. Bisphenol A (BPA), bisphenol S, benzophenone-1 (BP-1), benzophenone-3 (BP-3), 4-hydroxybenzophenone, methylparaben (MeP), ethylparaben and propylparaben (PrP) were detected in more than 50% of the urine samples, with median concentrations of 0.938 ng/mL, 0.0111 ng/mL, 0.191 ng/mL, 1.30 ng/mL, 0.0320 ng/mL, 25.9 ng/mL, 4.31 ng/mL and 1.94 ng/mL, respectively. A significant positive correlation was observed between BP-1 and BP-3, as well as between MeP and PrP, indicating metabolic transformation and combined use, respectively. selleck chemicals The concentrations of MeP and PrP in females were significantly higher than those in males, suggesting that females were exposed to more MeP and PrP than males.

Autoři článku: Oneilwolff4722 (Alexandersen Jensby)