Knowlesvognsen0516

Z Iurium Wiki

Verze z 29. 8. 2024, 17:41, kterou vytvořil Knowlesvognsen0516 (diskuse | příspěvky) (Založena nová stránka s textem „The effectiveness of PTENUE is also demonstrated in a real application, where insights are presented regarding the leading forces in financial data.Many re…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The effectiveness of PTENUE is also demonstrated in a real application, where insights are presented regarding the leading forces in financial data.Many real systems are strongly characterized by collective cooperative phenomena whose existence and properties still need a satisfactory explanation. Coherently with their collective nature, they call for new and more accurate descriptions going beyond pairwise models, such as graphs, in which all the interactions are considered as involving only two individuals at a time. Hypergraphs respond to this need, providing a mathematical representation of a system allowing from pairs to larger groups. Selleckchem AP1903 In this work, through the use of different hypergraphs, we study how group interactions influence the evolution of cooperation in a structured population, by analyzing the evolutionary dynamics of the public goods game. Here we show that, likewise to network reciprocity, group interactions also promote cooperation. More importantly, by means of an invasion analysis in which the conditions for a strategy to survive are studied, we show how, in heterogeneously-structured populations, reciprocity among players is expected to grow with the increasing of the order of the interactions. This is due to the heterogeneity of connections and, particularly, to the presence of individuals standing out as hubs in the population. Our analysis represents a first step towards the study of evolutionary dynamics through higher-order interactions, and gives insights into why cooperation in heterogeneous higher-order structures is enhanced. Lastly, it also gives clues about the co-existence of cooperative and non-cooperative behaviors related to the structural properties of the interaction patterns.Electrohysterography (EHG) has been shown to provide relevant information on uterine activity and could be used for predicting preterm labor and identifying other maternal fetal risks. The extraction of high-quality robust features is a key factor in achieving satisfactory prediction systems from EHG. Temporal, spectral, and non-linear EHG parameters have been computed to characterize EHG signals, sometimes obtaining controversial results, especially for non-linear parameters. The goal of this work was to assess the performance of EHG parameters in identifying those robust enough for uterine electrophysiological characterization. EHG signals were picked up in different obstetric scenarios antepartum, including women who delivered on term, labor, and post-partum. The results revealed that the 10th and 90th percentiles, for parameters with falling and rising trends as labor approaches, respectively, differentiate between these obstetric scenarios better than median analysis window values. Root-mean-square amplitude, spectral decile 3, and spectral moment ratio showed consistent tendencies for the different obstetric scenarios as well as non-linear parameters Lempel-Ziv, sample entropy, spectral entropy, and SD1/SD2 when computed in the fast wave high bandwidth. These findings would make it possible to extract high quality and robust EHG features to improve computer-aided assessment tools for pregnancy, labor, and postpartum progress and identify maternal fetal risks.Competition between and within groups of workers takes place in labor markets that are segmented along various, often unobservable dimensions. This paper proposes a measure of the intensity of competition in labor markets on the basis of limited data. The maximum entropy principle is used to make inferences about the unobserved mobility decisions of workers in US household data. The quantal response statistical equilibrium class of models can be seen to give robust microfoundations to the persistent patterns of wage inequality. An application to labor market competition between native and foreign-born workers in the United States shows that this class of models captures a substantial proportion of the informational content of observed wage distributions.The analysis of independence between statistical randomness tests has had great attention in the literature recently. Dependency detection between statistical randomness tests allows one to discriminate statistical randomness tests that measure similar characteristics, and thus minimize the amount of statistical randomness tests that need to be used. In this work, a method for detecting statistical dependency by using mutual information is proposed. The main advantage of using mutual information is its ability to detect nonlinear correlations, which cannot be detected by the linear correlation coefficient used in previous work. This method analyzes the correlation between the battery tests of the National Institute of Standards and Technology, used as a standard in the evaluation of randomness. The results of the experiments show the existence of statistical dependencies between the tests that have not been previously detected.High-entropy alloy coatings (HEAC) exhibit good frictional wear and corrosion resistances, which are of importance for structure materials. In this study, the microstructure, surface morphology, hardness, frictional wear and corrosion resistance of an AlCoCrFeNi high-entropy alloy coating synthesized by atmospheric plasma spraying (APS) were investigated. The frictional wear and corrosion resistance of the coating are simultaneously improved with an increase of the power of APS. The influence of the APS process on the microstructure and mechanical behavior is elucidated. The mechanisms of frictional wear and corrosion behavior of the AlCoCrFeNi HEAC are discussed in detail.Biological tissue identification in real clinical scenarios is a relevant and unsolved medical problem, particularly in the operating room. Although it could be thought that healthy tissue identification is an immediate task, in practice there are several clinical situations that greatly impede this process. For instance, it could be challenging in open surgery in complex areas, such as the neck, where different structures are quite close together, with bleeding and other artifacts affecting visual inspection. Solving this issue requires, on one hand, a high contrast noninvasive technique and, on the other hand, powerful classification algorithms. Regarding the technique, optical diffuse reflectance spectroscopy has demonstrated such capabilities in the discrimination of tumoral and healthy biological tissues. The complex signals obtained, in the form of spectra, need to be adequately computed in order to extract relevant information for discrimination. As usual, accurate discrimination relies on massive measurements, some of which serve as training sets for the classification algorithms.

Autoři článku: Knowlesvognsen0516 (Wilkinson Rosen)