Steenpeck4827
Heat-stable antifungal factor (HSAF) is produced by the fermentation of Lysobacter enzymogenes, which is known for its broad-spectrum antifungal activity and novel mode of action. However, studies on the separation of HSAF have rarely been reported. Herein, alteramide B (the main byproduct) was removed firstly from the fermentation broth by photodegradation to improve the purity of HSAF. Then, the separation of HSAF via adsorption by macroporous adsorption resins (MARs) was evaluated and NKA resin showed highest static adsorption and desorption performances. After optimizing the static and dynamic adsorption characteristics, the content of HSAF in the purified product increased from 8.67 ± 0.32% (ethyl acetate extraction) to 31.07 ± 1.12% by 3.58-fold. These results suggest that the developed strategy via photodegradation and macroporous resin adsorption is an effective process for the separation of HSAF, and it is also a promising method for the large-scale preparation of HSAF for agricultural applications.The impact of two pesticides (S-metolachlor and propiconazole) and their respective main metabolites (ESA-metolachlor and 1,2,4-triazole) on bacterial denitrification in groundwater was studied. For this, the denitrification activity and the bacterial diversity of a microbial community sampled from a nitrate-contaminated groundwater were monitored during 20 days in lab experiments in the presence or absence of pesticides or metabolites at 2 or 10 μg/L. The kinetics of nitrate reduction along with nitrite and N2O production all suggested that S-metolachlor had no or only little impact, whereas its metabolite ESA-metolachlor inhibited denitrification by 65% at 10 μg/L. Propiconazole and 1,2,4-triazole also inhibited denitrification at both concentrations, but to a lesser extent (29-38%) than ESA-metolachlor. When inhibition occurred, pesticides affected the reduction of nitrate into nitrite step. However, no significant differences were detected on the abundance of nitrate reductase narG and napA genes, suggesting an impact of pesticides/metabolites at the protein level rather than on denitrifying bacteria abundance. 16S rRNA gene Illumina sequencing indicated no major modification of bacterial diversity in the presence or absence of pesticides/metabolites, except for ESA-metolachlor and propiconazole at 10 μg/L that tended to increase or decrease Shannon and InvSimpson indices, respectively. General growth parameters suggested no impact of pesticides, except for propiconazole at 10 μg/L that partially inhibited acetate uptake and induced a decrease in microbial biomass. In conclusion, pesticides and metabolites can have side effects at environmental concentrations on microbial denitrification in groundwater and may thus affect ecosystem services based on microbial activities.Multi-drug resistant (MDR), gram-negative Enterobacteriaceae, such as Escherichia coli (E. coli) limit therapeutic options and increase morbidity, mortality, and treatment costs worldwide. They pose a serious burden on healthcare systems, especially in developing countries like Rwanda. Several studies have shown the effects caused by the global spread of extended-spectrum beta-lactamase (ESBL)-producing E. coli. However, limited data is available on transmission dynamics of these pathogens and the mobile elements they carry in the context of clinical and community locations in Sub-Saharan Africa. Here, we examined 120 ESBL-producing E. coli strains from patients hospitalized in the University Teaching Hospital of Butare (Rwanda), their attending caregivers as well as associated community members and livestock. Based on whole-genome analysis, the genetic diversification and phylogenetics were assessed. Moreover, the content of carried plasmids was characterized and investigated for putative transmission among the circulation of clinically relevant, pathogenic ESBL-producing E. this website coli among patients, caregivers and the community in Rwanda. Combining antimicrobial resistance with virulence in addition to the putative exchange of mobile genetic elements among bacterial pathogens poses a significant risk around the world.Truffle fungi are esteemed for their aromatic qualities and are among the most widely cultivated edible ectomycorrhizal fungi. Here we document a successful method for establishing Tuber lyonii, the pecan truffle, on pecan (Carya illinoinensis) seedlings in a field setting. We assessed the impacts of soil fumigation and varying concentrations of truffle spore inoculum on the ectomycorrhizal fungal and the complete fungal communities as well as the colonization of T. lyonii on pecan roots at three nurseries in Georgia, United States. To identify fungal communities on pecan seedlings, we performed high-throughput amplicon sequencing of the fungal ITS1 rDNA region. Our 5-year long field experiment demonstrates that fumigation and inoculation together resulted in the highest persistence of T. lyonii on pecan roots. While fungal OTU numbers fluctuated over the years of our experiments, there was no statistical support to demonstrate diversification of communities when Shannon diversity metrics were used. However, we did find that older seedlings were less likely to be dominated by T. lyonii compared to younger ones, suggesting successional changes in the fungal community over time. This suggests that transplanting inoculated seedlings after 2 or 3 years post-inoculation is optimal for future truffle propagation efforts. Our results demonstrate that T. lyonii can be established in situ with methods that are compatible with current pecan nursery industry practices and that fungal communities on pecan seedlings vary depending on the experimental treatments used during planting. While the pecan truffle is not yet widely cultivated, our results provide insights for future large-scale cultivation of this and perhaps other Tuber species.The whole-genome sequencing (WGS) of human adenoviruses (HAdVs) plays an important role in identifying, typing, and mutation analysis of HAdVs. Nowadays, three generations of sequencing have been developed. The accuracy of first-generation sequencing is up to 99.99%, whereas this technology relies on PCR and is time consuming; the next-generation sequencing (NGS) is expensive and not cost effective for determining a few special samples; and the third-generation sequencing technology has a higher error rate. In this study, first, we developed an efficient HAdV genomic DNA extraction method. Using the complete genomic DNA instead of the PCR amplicons as the direct sequencing template and a set of walking primers, we developed the HAdV WGS method based on first-generation sequencing. The HAdV whole genomes were effectively sequenced by a set of one-way sequencing primers designed, which reduced the sequencing time and cost. More importantly, high sequence accuracy is guaranteed. Four HAdV strains (GZ01, GZ02, HKpecies B, C, and E. The sequencing strategy may also be applied to the WGS of the other DNA viruses.Glycogen is a polysaccharide that comprises α-1,4-linked glucose backbone and α-1,6-linked glucose polymers at the branching points. It is widely found in organisms ranging from bacteria to eukaryotes. The physiological role of glycogen is not confined to being an energy reservoir and carbon source but varies depending on organisms. Sulfolobus acidocaldarius, a thermoacidophilic archaeon, was observed to accumulate granular glycogen in the cell. However, the role of glycogen and genes that are responsible for glycogen metabolism in S. acidocaldarius has not been identified clearly. The objective of this study is to identify the gene cluster, which is composed of enzymes that are predicted to be involved in the glycogen metabolism, and confirm the role of each of these genes by constructing deletion mutants. This study also compares the glycogen content of mutant and wild type and elucidates the role of glycogen in this archaeon. The glycogen content of S. acidocaldarius MR31, which is used as a parent strain ath rate of the glycogen deficient strain was found to be higher than any other strain, thereby suggesting that the glycogen in S. acidocaldarius supports cell maintenance in harsh conditions.Irrigation return flows (IRFs) collect surface runoff and subsurface drainage, causing them to have elevated contaminant and bacterial levels, and making them a potential source of pollutants. The purpose of this study was to determine antimicrobial susceptibility among Escherichia coli and enterococcal isolates that were collected from IRFs in a south-central Idaho watershed. Environmental isolates can be a potentially important source of antimicrobial resistance (AMR) and IRFs may be one way resistance genes are transported out of agroecosystems. Water samples were collected from nine IRFs and one background site (canal water from Snake River) on a biweekly basis during 2018. Escherichia coli and enterococci were enumerated via a most probable number (MPN) technique, then subsamples were plated on selective media to obtain isolates. Isolates of E. coli (187) or enterococci (185) were tested for antimicrobial susceptibility using Sensititre broth microdilution plates. For E. coli, 13% (25/187) of isolates were resistant to tetracycline, with fewer numbers being resistant to 13 other antimicrobials, with none resistant to gentamicin. While 75% (141/187) of the E. coli isolates were pan-susceptible, 12 multidrug resistance (MDR) patterns with 17 isolates exhibiting resistance to up to seven drug classes (10 antimicrobials). For the enterococcal species, only 9% (16/185) of isolates were pan-susceptible and the single highest resistance was to lincomycin (138/185; 75%) followed by nitrofurantoin (56/185; 30%) and quinupristin/dalfopristin (34/185; 18%). In addition, 13 enterococcal isolates belonging to Enterococcus faecalis, Enterococcus faecium, Enterococcus casseliflavus, and Enterococcus thailandicus, were determined to be MDR to up to six different antimicrobial drug classes. None of the enterococcal isolates were resistant to gentamycin, linezolid, tigecycline, and vancomycin.In a cursory survey of fungi on Asteraceae in Yunnan Province, China, we report fungal species belonging to the family Leptosphaeriaceae (Pleosporales, Dothideomycetes). Two novel species have remarkable ascospores that are unusual for sexual ascomycetes. Multilocus phylogeny of large subunit, small subunit, and internal transcribed spacer sequence data showed one to be a novel genus, while the other is a new species. Praeclarispora artemisiae gen. et sp. nov. is introduced and is typical of Leptosphaeriaceae, but has unusual fusiform, versicolor ascospores with a brown median cell. Sphaerellopsis artemisiae sp. nov. has scolecosporous ascospores with deeply constricted septa that split into two parts, which resembles S. isthmospora but differs by ascospore dimension and molecular data. In addition, Plenodomus artemisiae is reported as a new collection from dead stems of Artemisia argyi in Qujing City. Plenodomus sinensis is reported as a new host record from Ageratina adenophora. All taxa are illustrated and described based on evidence of taxonomy and phylogeny.OXA-48-like carbapenemases are among the most frequent carbapenemases in Gram-negative Enterobacterales worldwide with the highest prevalence in the Middle East, North Africa and Europe. Here, we investigated the so far uncharacterized carbapenemase OXA-484 from a clinical E. coli isolate belonging to the high-risk clone ST410 regarding antibiotic resistance pattern, horizontal gene transfer (HGT) and genetic support. OXA-484 differs by the amino acid substitution 214G compared to the most closely related variants OXA-181 (214R) and OXA-232 (214S). The bla OXA - 484 was carried on a self-transmissible 51.5 kb IncX3 plasmid (pOXA-484) showing high sequence similarity with plasmids harboring bla OXA - 181. Intraspecies and intergenus HGT of pOXA-484 to different recipients occurred at low frequencies of 1.4 × 10-7 to 2.1 × 10-6. OXA-484 increased MICs of temocillin and carbapenems similar to OXA-232 and OXA-244, but lower compared with OXA-48 and OXA-181. Hence, OXA-484 combines properties of OXA-181-like plasmid support and transferability as well as β-lactamase activity of OXA-232.