Fogedpollock2029

Z Iurium Wiki

Verze z 28. 8. 2024, 17:37, kterou vytvořil Fogedpollock2029 (diskuse | příspěvky) (Založena nová stránka s textem „Pituitary adenylate cyclase-activating polypeptide (PACAP) is a peptide involved in physio-pathological processes of the eye. It exerts multiple effects di…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a peptide involved in physio-pathological processes of the eye. It exerts multiple effects directly through activation of its related receptors and indirectly through increases in the synthesis of activity-dependent neuroprotective protein (ADNP). To study the role of ADNP and protect against ADNP deficiencies, a small peptide called NAP was synthetized. It includes an eight amino acid active site sequence of ADNP. In this review, we summarize the knowledge regarding the neuroprotective function played by PACAP and NAP in retinal tissue and provide an overview of the correlation between PACAP and ADNP in the context of diabetic retinopathy.Long non-coding RNAs (lncRNAs) play a decisive role in the development of the central nervous system and modulation, differentiation, and function of neurons. Thus, any abnormal pattern of expression of these transcripts might alter normal development leading to neuropsychiatric disorders. In this regard, transcripts of brain-derived neurotrophic factor (BDNF) and four BDNF-associated lncRNAs (BDNF-AS, MIR137HG, MIAT, and PNKY) were evaluated in the peripheral blood of schizophrenia (SCZ) patients as well as normal subjects. The results indicated that the relative expression (RE) of PNKY was higher in SCZ patients as compared with controls (posterior beta of RE = 2.605, P value = 0.006) and in female patients compared with female controls (posterior beta of RE = 2.831, P value less then 0.0001). BDNF expression was also higher in SCZ patients when compared with controls (posterior beta of RE = 0.64, P value less then 0.036). Finally, a correlation was detected between the disease status and gender in terms of BDNF-AS expression (P value = 0.026). An inverse correlation was also found between levels of PNKY and age in the control group (r = - 0.30, P value less then 0.0001). Expressions of BDNF and all lncRNAs were correlated with each other in both patients and controls. PNKY had the best diagnostic power among all assessed genes in the identification of disease status (area under curve = 0.78). BDNF, BDNF-AS, MIR137HG, and MIAT genes could discriminate SCZ patients from normal subjects with diagnostic power of 71%, 72%, 67%, and 68%, respectively. The current investigation suggests the possibility of the application of transcript levels of lncRNAs as an SCZ diagnostic marker. However, it warrants further studies in larger sample sizes.The association of apolipoprotein AIV (APOA4) with depression or plasma levels of lipids and glucose has been inconsistently reported. However, interplays between APOA4 and depression on the levels have not been explored yet. The present study aimed to investigate plasma levels of APOA4, lipids, and glucose in adolescents with different genotypes of APOA4 rs5104 and with or without depression. Depressive symptoms were assessed in 631 adolescents by Beck Depression Inventory (BDI). A total score of 14 was defined as the cutoff point for depression. Plasma levels of triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), glucose, and insulin were measured by routine methods, and APOA4 by enzyme-linked immunosorbent assays. Genotyping was performed by polymerase chain reaction-restriction fragment length polymorphism analyses and verified by DNA sequencing. Female adolescents had higher prevalence of depression than male subjects only in G allele carriers (p = 0.015), but not in AA homozygotes. Risk factors of depression and predictors of depression severity were different between G allele carriers and AA homozygotes. Lower levels of glucose (p = 0.003) were observed in male G allele carriers than those in male AA homozygotes and increased TG levels (p = 0.008) in female G allele carriers when compared with those in female AA homozygotes. When both APOA4 rs5104 and depression were taken into account, subjects with depression had higher levels of plasma APOA4 than adolescents without depression only in female G allele carriers (p = 0.043), but no significant changes of plasma lipids and glucose. Depression augments plasma APOA4 levels without changes of plasma lipids and glucose in female adolescents carrying G allele of APOA4 rs5104. These results may provide a novel explanation for the inconsistent relationship between depression, APOA4, and plasma levels of lipids and glucose in the literature.Dysregulation of the serotonergic system has been reported to have a significant role in several neurological disorders including depression, autism and substance abuse disorders. Changes in the expression of the serotonin transporter (SERT) through polymorphisms in the regulatory regions of the SERT gene have been associated, but not yet been conclusively linked to, neuropsychiatric disorders. In turn, dendritic spine structure and function are critical for neuronal function and the disruption of dendritic spine formation at glutamatergic synapses is a hallmark of several neuropsychiatric disorders. To understand the effect of SERT depletion on dendritic spine formation, neuronal cultures were established from the cortex of postnatal day 0-1 SERT knockout (KO) rats. Cortical neurons were subsequently allowed to mature to 21 days in vitro, and dendritic spine density was assessed using immunocytochemical co-labelling of drebrin and microtubule associated protein 2. Genetic knockout of the SERT had a gene-dose effect on dendritic spine densities of cortical neurons. The results of this paper implicate SERT function with the formation of dendritic spines at glutamatergic synapses, thereby offering insight into the aetiology of several neuropathologies.Inflammation contributes to mitochondrial dysfunction and neuronal apoptosis. The aim of this study was to determine whether insulin-like growth factor-1 (IGF-1) alleviates mitochondrial apoptosis in lipopolysaccharide (LPS)-treated PC-12 cells, and to further explore the mechanism involved. Prepared PC-12 cells were treated with IGF-1, Mdivi-1 (DRP1 blocker), LY294002 (PI3K blocker), betulinic acid (NF-κB activator) or their combinations. Mitochondrial membrane potential and ATP generation were then measured to assess mitochondrial function. The rate of apoptosis was determined using flow cytometry. The expression of several apoptosis proteins (i.e. Bax, cleaved caspase-9 and cleaved caspase-3) and signaling proteins (i.e. p-GSK3β, NF-κB and NLRP3) was measured using western blotting. Compared with the control cells, the LPS-treated cells showed evidence of mitochondrial dysfunction, increased apoptosis and upregulation of apoptosis proteins, which were significantly alleviated by Mdivi-1. These findings indicate that neuronal apoptosis was activated partly through the mitochondrial pathway. IGF-1 treatment inhibited mitochondrial apoptosis in a dose-dependent manner in the LPS-treated cells. The reagent also increased the expression of p-GSK3β and decreased the expression of NF-κB and NLRP3. Both LY294002 and betulinic acid reversed the protective effect of IGF-1. In addition, LY294002 affected the expression of the three signaling proteins, while betulinic acid only affected the expression of NF-κB and NLRP3. These findings indicated a GSK3β/NF-κB/NLRP3 signaling pathway was existed and was involved in the protective mechanism of IGF-1. In conclusion, IGF-1 alleviated mitochondrial apoptosis through GSK3β/NF-κB/NLRP3 signaling pathway in LPS-treated PC-12 cells.T-006, a small-molecule compound derived from tetramethylpyrazine (TMP), has potential for the treatment of neurological diseases. In order to investigate the effect of T-006 prophylactic treatment on an Alzheimer's disease (AD) model and identify the target of T-006, we intragastrically administered T-006 (3 mg/kg) to Alzheimer's disease (AD) transgenic mice (APP/PS1-2xTg and APP/PS1/Tau-3xTg) for 6 and 8 months, respectively. T-006 improved cognitive ability after long-term administration in two AD mouse models and targeted mitochondrial-related protein alpha-F1-ATP synthase (ATP5A). T-006 significantly reduced the expression of phosphorylated-tau, total tau, and APP while increasing the expression of synapse-associated proteins in 3xTg mice. In addition, T-006 modulated the JNK and mTOR-ULK1 pathways to reduce both p-tau and total tau levels. Our data suggested that T-006 mitigated cognitive decline primarily by reducing the p-tau and total tau levels in 3xTg mice, supporting further investigation into its development as a candidate drug for AD treatment.Previous evidence has shown a link between neurodegenerative diseases, including Parkinson's disease (PD), and melatonin. The data in the literature about the impact of the hormone under different experimental PD conditions are quite controversial, and its effect on memory impairment in the disease is very poorly explored. CHS828 chemical structure The current research was aimed at investigating the role of melatonin pretreatment on memory and motor behavior in healthy rats and those with the partial 6-hydroxydopamine (6-OHDA) model of PD. All rodents were pretreated with melatonin (20 mg/kg, intraperitoneally) for 5 days. At 24 h and 7 days after the first treatment for healthy rats, and at the second and third week post-lesion for those with PD, the animals were tested behaviorally (apomorphine-induced rotations, rotarod, and passive avoidance tests). The neurochemical levels of dopamine (DA), acetylcholine (ACh), noradrenaline (NA), and serotonin (Sero) in the brain were also determined. The results showed that in healthy animals, melatonin pretreatment had amnestic and motor-suppressive effects and did not change the levels of measured brain neurotransmitters. In animals with PD, melatonin pretreatment exerted a neuroprotective effect, manifested as a significantly decreased number of apomorphine-induced rotations, reduced number of falls in the rotarod test, and improved memory performance. The brain DA and ACh concentrations in the same animals were restored to the control levels, and those of NA and Sero did not change. Our results demonstrate a beneficial effect of melatonin on memory and motor disturbance in 6-OHDA-lesioned rats.Baihui-penetrating-Qubin acupuncture is frequently used to treat intracerebral hemorrhage (ICH) in China. Acupuncture affects multiple microRNAs in diseases. MicroRNA-23a-3p (miR-23a-3p) has been demonstrated to be up-regulated in ICH patients. Herein, the effect of Baihui-penetrating-Qubin acupuncture on miR-23a-3p expression after ICH and the role of miR-23a-3p in ICH were discussed. A rat model of ICH was induced by infusing autologous blood into caudate nucleus. Acupuncture was performed after ICH once a day for 30 min. After 3 consecutive days of acupuncture, the neurobehavioral function, brain edema, neuronal cell death, inflammation, ferroptosis, nuclear factor E2-like 2 (NFE2L2) signaling and miR-23a-3p levels in brain tissues were analyzed. Additionally, antagomiR-23a-3p was injected into rats 3 days prior to ICH modeling to analyze the function of miR-23a-3p in neuronal cell death, inflammation, ferroptosis, and NFE2L2 signaling. Acupuncture relieved the ICH-induced neurological function deficits, increases in brain water content and Fluoro-Jade B (FJB)-positive cells and release of proinflammatory cytokines.

Autoři článku: Fogedpollock2029 (Herbert Haagensen)