Engbergrichards0073

Z Iurium Wiki

Verze z 25. 8. 2024, 21:41, kterou vytvořil Engbergrichards0073 (diskuse | příspěvky) (Založena nová stránka s textem „[This corrects the article DOI 10.18632/oncotarget.3713.].Previously, we reported apolipoprotein A-I (apoA-I), the major protein component of high-density…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

[This corrects the article DOI 10.18632/oncotarget.3713.].Previously, we reported apolipoprotein A-I (apoA-I), the major protein component of high-density lipoprotein (HDL), has potent anti-melanoma activity. We used DNA microarray and bioinformatics to interrogate gene expression profiles of tumors from apoA-I expressing (A-I Tg+/-) versus apoA-I-null (A-I KO) animals to gain insights into mechanisms of apoA-I tumor protection. Differential expression analyses of 11 distinct tumors per group with > 1.2-fold cut-off and a false discovery rate adjusted p less then 0.05, identified 176 significant transcripts (71 upregulated and 105 downregulated in A-I Tg+/- versus A-I KO group). Bioinformatic analyses identified the mevalonate and de novo serine/glycine synthesis pathways as potential targets for apoA-I anti-tumor activity. Relative to A-I KO, day 7 B16F10L melanoma tumor homografts from A-I Tg+/- exhibited reduced expression of mevalonate-5-pyrophosphate decarboxylase (Mvd), a key enzyme targeted in cancer therapy, along with a number of key genes in the sterol synthesis arm of the mevalonate pathway. Phosphoglycerate dehydrogenase (Phgdh), the first enzyme branching off glycolysis into the de novo serine synthesis pathway, was the most repressed transcript in tumors from A-I Tg+/-. We validated our mouse tumor studies by comparing the significant transcripts with adverse tumor markers previously identified in human melanoma and found 45% concordance. Our findings suggest apoA-I targets the mevalonate and serine synthesis pathways in melanoma cells in vivo, thus providing anti-tumor metabolic effects by inhibiting the flux of biomolecular building blocks for macromolecule synthesis that drive rapid tumor growth.The androgen receptor (AR) is a major driver of prostate cancer development and progression. Men who develop advanced prostate cancer often have long-term cancer control when treated with androgen-deprivation therapies (ADT). Still, their disease inevitably becomes resistant to ADT and progresses to castration-resistant prostate cancer (CRPC). ADT involves potent competitive AR antagonists and androgen synthesis inhibitors. Resistance to these types of treatments emerges, primarily through the maintenance of AR signaling by ligand-independent activation mechanisms. There is a need to find better ways to block AR to overcome CRPC. In the findings reported here, we demonstrate that the nuclear scaffold protein, nucleolin (NCL), suppresses the expression of AR. NCL binds to a G-rich region in the AR promoter that forms a G-quadruplex (G4) structure. Binding of NCL to this G4-element is required for NCL to suppress AR expression, specifically in AR-expressing tumor cells. Compounds that stabilize G4 structures require NCL to associate with the G4-element of the AR promoter in order to decrease AR expression. A newly discovered G4 compound that suppresses AR expression demonstrates selective killing of AR-expressing tumor cells, including CRPC lines. Our findings raise the significant possibility that G4-stabilizing drugs can be used to increase NCL transcriptional repressor activity to block AR expression in prostate cancer. Our studies contribute to a clearer understanding of the mechanisms that control AR expression, which could be exploited to overcome CRPC.Background Neuroendocrine neoplasms (NENs) are a heterogeneous group of neoplasms that span from well-differentiated neuroendocrine tumors (NETs) to highly aggressive neoplasms classified as neuroendocrine carcinomas (NECs). The genomic landscape of NENs has not been well studied. The aim of this study is to confirm the feasibility of next generation sequencing (NGS) testing circulating tumor DNA (ctDNA) in patients with NENs and characterize common alterations in the genomic landscape. Results Of the 320 NEN patients, 182 (57%) were male with a median age of 63 years (range 8-93) years. Tumor type included pancreatic NET (N = 165, 52%), gastrointestinal NEC (N = 52, 16%), large cell lung NEC (N = 21, 7%), nasopharyngeal NEC (N = 16, 5%) and NEC/NET not otherwise specified (N = 64, 20%). ctDNA NGS testing was performed on 338 plasma samples; 14 patients had testing performed twice and 2 patients had testing performed three times. Genomic alterations were defined in 280 (87.5%) samples with a total of 1,012 alterations identified after excluding variants of uncertain significance (VUSs) and synonymous mutations. Of the 280 samples with alterations, TP53 associated genes were most commonly altered (N = 145, 52%), followed by KRAS (N = 61, 22%), EGFR (N = 33, 12%), PIK3CA (N = 30, 11%), BRAF (N = 28, 10%), MYC (N = 28, 10%), CCNE1 (N = 28, 10%), CDK6 (N = 22, 8%), RB1 (N = 19, 7%), NF1 (N = 19, 7%), MET (N = 19, 7%), FGFR1 (N = 19, 7%), APC (N = 19, 7%), ERBB2 (N = 16, 6%) and PTEN (N = 14, 5%). Conclusions Evaluation of ctDNA was feasible among individuals with NEN. Liquid biopsies are non-invasive methods that can provide personalized options for targeted therapies in NEN patients. Patients and Methods Molecular alterations in 338 plasma samples from 320 patients with NEN were evaluated using clinical-grade NGS of ctDNA (Guardant360®) across multiple institutions. The test detects single nucleotide variants in 54-73 genes, copy number amplifications, fusions, and indels in selected genes.Ectopic expression in T-cell precursors of LIM only protein 2 (LMO2), a key factor in hematopoietic development, has been linked to the onset of T-cell acute lymphoblastic leukaemia (T-ALL). In the T-ALL context, LMO2 drives oncogenic progression through binding to erythroid-specific transcription factor SCL/TAL1 and sequestration of E-protein transcription factors, normally required for T-cell differentiation. A key requirement for the formation of this oncogenic protein-protein interaction (PPI) is the conformational flexibility of LMO2. Here we identify a small molecule inhibitor of the SCL-LMO2 PPI, which hinders the interaction in vitro through direct binding to LMO2. Biophysical analysis demonstrates that this inhibitor acts through a mechanism of conformational modulation of LMO2. Importantly, this work has led to the identification of a small molecule inhibitor of the SCL-LMO2 PPI, which can provide a starting point for the development of new agents for the treatment of T-ALL. These results suggest that similar approaches, based on the modulation of protein conformation by small molecules, might be used for therapeutic targeting of other oncogenic PPIs.Background adoptive immunotherapy is a promising cancer therapy. Immune cells are capable of recognizing and destroying cancer cells and represent a powerful strategy, however, this approach remains technically complicated, due to the need to select and isolate immune cells from these, present cancer antigens to those cells, expanding and reinjecting them. Lymph nodes recovered during gastric cancer surgery may represent an option for immunotherapy, since they harbor an enormous amount of immune cells, which have already been presented to cancer antigens. The advantage of selecting only cancer-negative lymph has not been determined yet. The status of immune checkpoints in the immune cells within the lymph nodes was analyzed in order to try to solve this problem. Materials and methods Tissue microarrays were constructed and automated immunostaining for PD-1 and PD-L1 was performed on 143 lymph nodes from 70 patients with gastric adenocarcinoma. Results In positive nodes, PD-L1 was only positivity in cancer cells (6%) and PD-1 was positive for B lymphocytes (60%), T lymphocytes (70%) and one case in cancer cells (2.5%). In negative nodes, most cases were positive for PD-1 in B (73.1%) and T (71.65%) lymphocytes. Conclusions Expression of PD-1 and PD-L1 in gastric cancer lymph nodes was demonstrated for the first time. PD-1 is expressed in positive and negative nodes, which could activate the PD-1 pathway. Lymphocytes from tumor-free lymph nodes were negative for PD-L1, and this might represent an advantage for selecting these lymph nodes as a potential source of immune cells for adoptive immunotherapy.The role of RANKL-RANK pathway in progesterone-driven mammary carcinogenesis and triple negative breast cancer tumorigenesis has been well characterized. However, and despite evidences of the existence of RANK-positive hormone receptor (HR)-positive breast tumors, the implication of RANK expression in HR-positive breast cancers has not been addressed before. Here, we report that RANK pathway affects the expression of cell cycle regulators and decreases sensitivity to fulvestrant of estrogen receptor (ER)-positive (ER+)/HER2- breast cancer cells, MCF-7 and T47D. Moreover, RANK overexpressing cells had a staminal and mesenchymal phenotype, with decreased proliferation rate and decreased susceptibility to chemotherapy, but were more invasive in vivo. In silico analysis of the transcriptome of human breast tumors, confirmed the association between RANK expression and stem cell and mesenchymal markers in ER+HER2- tumors. Importantly, exposure of ER+HER2- cells to continuous RANK pathway activation by exogenous RANKL, in vitro and in vivo, induced a negative feedback effect, independent of RANK levels, leading to the downregulation of HR and increased resistance to hormone therapy. These results suggest that ER+HER2- RANK-positive cells may constitute an important reservoir of slow cycling, therapy-resistance cancer cells; and that RANK pathway activation is deleterious in all ER+HER2- breast cancer cells, independently of RANK levels.Introduction Lower handgrip strength is a manifestation of sarcopenia and frailty, and has been reported to be associated with cerebral microbleeds (CMBs), which appear on T2*-weighted magnetic resonance scans as low-intensity spots. However, the underlying mechanism is unknown. selleck chemical We hypothesized that vascular endothelial injury could be the common factor in loss of handgrip strength and CMBs. We aimed to clarify the relationship between handgrip strength and CMBs, with reference to a marker of vascular repair capability. Materials and methods We conducted a cross-sectional study of 95 60- to 87-year-old Japanese people who underwent brain magnetic resonance imaging in 2016-2017. Baseline information was obtained by trained interviewers regarding the age, sex, smoking status, nutrient intake, cognition, medical history, education, and household income of the participants. Physical activity was assessed using a tri-axial accelerometer. We used the Fried frailty phenotype definition. Multivariable linear regression analysis was performed. Results Handgrip strength was independently associated with the presence of CMB after adjustment for age, sex, body mass index, classical cardiovascular risk factors, protein intake, and daily activity (B = -3.43, p = 0.027). This association was shown in participants with a low (B = -4.05, p = 0.045) but not high platelet count (B=-2.23, p = 0.479). Frailty was also independently associated with the presence of CMB after adjustment for confounders (B = 0.57, p = 0.014). Although this association was not present in participants a high platelet count, there was a positive trend in those with a low platelet count (B = 0.50, p = 0.135). Conclusions Platelet count, a marker of vascular repair capability, appears to modify the relationship between handgrip strength and CMBs.

Autoři článku: Engbergrichards0073 (Pearson Have)