Aarupjensby9897
Rational design of such systems should be guided by theoretical models we also describe.The successful treatment of Helicobacter pylori infections is becoming increasingly difficult due to the rise of resistance against current broad spectrum triple therapy regimens. In the search for narrow-spectrum agents against H. pylori, a high-throughput screen identified two structurally related thienopyrimidine compounds that selectively inhibited H. pylori over commensal members of the gut microbiota. To develop the structure-activity relationship (SAR) of the thienopyrimidines against H. pylori, this study employed four series of modifications in which systematic substitution to the thienopyrimidine core was explored and ultimately side-chain elements optimized from the two original hits were merged into lead compounds. During the development of this series, the mode of action studies identified H. pylori's respiratory complex I subunit NuoD as the target for lead thienopyrimidines. As this enzyme complex is uniquely essential for ATP synthesis in H. pylori, a homology model of the H. pylori NuoB-NuoD binding interface was generated to help rationalize the SAR and guide further development of the series. From these studies, lead compounds emerged with increased potency against H. pylori, improved safety indices, and a good overall pharmacokinetic profile with the exception of high protein binding and poor solubility. Although lead compounds in the series demonstrated efficacy in an ex vivo infection model, the compounds had no efficacy in a mouse model of H. pylori infection. Additional optimization of pharmacological properties of the series to increase solubility and free-drug levels at the sequestered sites of H. pylori infection would potentially result in a gain of in vivo efficacy. The thienopyrimidine series developed in this study demonstrates that NuoB-NuoD of the respiratory complex I can be targeted for development of novel narrow spectrum agents against H. pylori and that thienopyrimines can serve as the basis for future advancement of these studies.Plutonium (Pu) redox and complexation processes in the presence of natural organic matter and associated iron can impact the fate and transport of Pu in the environment. We studied the fate of Pu(IV) in the presence of humic acid (HA) and Fe(II) upon reaction with H2O2 that may be generated by photochemical and other reactions. A portion of Pu(IV) was oxidized to Pu(V/VI), which is primarily ascribed to the generation of reactive intermediates from the oxidation of Fe(II) and Fe(II)-HA complexes by H2O2. The kinetics of Pu(IV) oxidation is pH-dependent and can be described by a model that incorporates Pu redox kinetics with published HA-modified Fenton reaction kinetics. At pH 3.5, the presence of HA slowed Pu(IV) oxidation, while at pH 6, HA accelerated Pu(IV) oxidation in the first several hours followed by a reverse process where the oxidized Pu(V/VI) was reduced back to Pu(IV). Analysis of Pu-associated particle size suggests that Pu oxidation state is a major driver in its complexation with HA and formation of colloids and heteroaggregates. Our results revealed the H2O2-driven oxidation of Pu(IV)-HA-Fe(II) colloids with implications to the transient mobilization of Pu(V/VI) in organic-rich redox transition zones.A variety of methods are available to investigate the bonding in inorganic compounds. selleck chemical In contrast to wavefunction-based analyses, topological analysis of the electron density affords the advantage of analyzing a physical observable the electron density. Classical topological analyses of bonding interactions within the atoms in molecules framework typically involve location of a bond path between two atoms and evaluation of a range of real-space functions at the (3, -1) critical point in the electron density that exists on that bond path. We show here that counter-intuitive trends are obtained from the analysis of the electron density (ρ), the Laplacian (∇2ρ), and ellipticity (ε) at the O-E (3, -1) critical points in the coupled-cluster singles doubles electron densities of a series of compounds featuring a range of oxygen-pnictogen bond types EO+, HEO, H2EOH, H3EOH+, and H3EO (where E = N, P, As, Sb, or Bi). If, instead, these real-space functions are evaluated along the length of the bond path, the discrepancies in the trends are resolved. We show that robust results are also obtained using electron densities from less computationally demanding density functional theory calculations. The increased computational efficiency allowed us to also investigate organic derivatives of these oxygen-pnictogen-bonded compounds and observe that the trends hold in these instances as well. We anticipate that these results will be of use to inorganic chemists engaged in the synthesis and evaluation of novel bonding interactions, particularly those involving heavy main-group elements.Inspired by the highly efficient water oxidation of Mn4CaO5 in natural photosynthesis, development of novel artificial water oxidation catalysts (WOCs) with structure and function mimicked has inspired extensive interests. A novel 3D cobalt-based MOF (GXY-L8-Co) was synthesized for promising artificial water oxidation by employing the Co4O4 quasi-cubane motifs with a similar structure as the Mn4CaO5 as the core. The GXY-L8-Co not only shows good chemical stability in common organic solvents or water for up to 10 days but also exhibits oxygen evolution performance. It has been demonstrated that the uniform distribution of Co4O4 catalytic active sites confined in the MOF framework should be responsible for the good robustness and catalytic performance.Ionic metal-organic frameworks (MOFs) with an ionic skeleton and unique porous structures could selectively adsorb charged dyes with specific dimensions. However, the ion-exchange-based and size-exclusion-based process as a chromatography method needs to be further explored. In this study, a new microporous anionic MOF, JUC-210, was synthesized using a spirobifluorene-based ligand and trivalent metal indium. JUC-210 has a two-fold interpenetrated pts framework with a large void space, possessing suitable pore sizes and an anionic skeleton for efficient separation of certain organic dyes. Different types of dyes were used to observe the selective adsorption ability of the as-synthesized MOF. JUC-210 displayed high selective adsorption toward the cationic dye methylene blue with positive charges based on ion exchange and size exclusion. Moreover, the effect of solvent on the selective adsorption behaviors of JUC-210 was investigated. The exploration of novel MOF materials would provide potential efficient adsorbents for separation of organic dyes.New CrAs-based layered mixed-anion compounds Sr2ScCrAsO3 (SrScO-21113) and Ba3Sc2Cr2As2O5 (BaScO-32225) were synthesized, and their electronic structures and physical properties were investigated. The structures of these compounds comprise stacking of the anti-fluorite CrAs layer and perovskite-like SrScO or BaScO layers. The lattice constants of these compounds are relatively longer than those of the related compounds, such as BaCr2As2, owing to the insertion of a large perovskite blocking layer of SrScO/BaScO. While there are variations in the crystal structure of this system, such as 21113 and 32225, their chemical stability calculated by the first-principles calculations indicated that SrScO-21113 is energetically favorable compared to SrScO-32225. The formation energies of BaScO-32225 and BaScO-21113 are close to each other; in the experiment, while there was an indication of BaScO-21113 formation, only BaScO-32225 was formed as a single phase because of the low chemical stability of BaScO-21113. The partial density of states indicates that the majority of states are obtained from the 3d4-electrons of the Cr element hybridized modestly with p electrons at the Fermi energy. The magnetic properties of these compounds were paramagnetic, and they were different from related compounds, such as BaCr2As2, probably because of their long a-axis lengths. The temperature dependences of the electrical resistivities of both samples were in good agreement with the electronic band structure calculations. The variety of structures in the series of compounds with a CrAs layer results in different physical properties, and further development of new compounds may bring novel functionalities, such as superconductivity.The increasing emergence of drug-resistant fungal pathogens, together with the limited number of available antifungal drugs, presents serious clinical challenges to treating systemic, life-threatening infections. Repurposing existing drugs to augment the antifungal activity of well-tolerated antifungals is a promising antifungal strategy with the potential to be implemented rapidly. Here, we explored the mechanism by which colistin, a positively charged lipopeptide antibiotic, enhances the antifungal activity of fluconazole, the most widely used orally available antifungal. In a range of susceptible and drug-resistant isolates and species, colistin was primarily effective at reducing fluconazole tolerance, a property of subpopulations of cells that grow slowly in the presence of a drug and may promote the emergence of persistent infections and resistance. Clinically relevant concentrations of colistin synergized with fluconazole, reducing fluconazole minimum inhibitory concentration 4-fold. Combining fluconazole and colistin also increased survival in a C. albicans Galleria mellonella infection, especially for a highly fluconazole-tolerant isolate. Mechanistically, colistin increased permeability to fluorescent antifungal azole probes and to intracellular dyes, accompanied by an increase in cell death that was dependent upon pharmacological or genetic inhibition of the ergosterol biosynthesis pathway. The positive charge of colistin is critical to its antifungal, and antibacterial, activity colistin directly binds to several eukaryotic membrane lipids (i.e., l-α-phosphatidylinositol, l-α-phosphatidyl-l-serine, and l-α-phosphatidylethanolamine) that are enriched in the membranes of ergosterol-depleted cells. These results support the idea that colistin binds to fungal membrane lipids and permeabilizes fungal cells in a manner that depends upon the degree of ergosterol depletion.COVID-19 is still placing a heavy health and financial burden worldwide. Impairment in patient screening and risk management plays a fundamental role on how governments and authorities are directing resources, planning reopening, as well as sanitary countermeasures, especially in regions where poverty is a major component in the equation. An efficient diagnostic method must be highly accurate, while having a cost-effective profile. We combined a machine learning-based algorithm with mass spectrometry to create an expeditious platform that discriminate COVID-19 in plasma samples within minutes, while also providing tools for risk assessment, to assist healthcare professionals in patient management and decision-making. A cross-sectional study enrolled 815 patients (442 COVID-19, 350 controls and 23 COVID-19 suspicious) from three Brazilian epicenters from April to July 2020. We were able to elect and identify 19 molecules related to the disease's pathophysiology and several discriminating features to patient's health-related outcomes.