Kragelundfreedman4360

Z Iurium Wiki

Verze z 25. 8. 2024, 21:17, kterou vytvořil Kragelundfreedman4360 (diskuse | příspěvky) (Založena nová stránka s textem „795), GradientBoosting (0.774), DecisionTree (0.773), Logistic (0.771) and gbm (0.771), from high to low. Among the five machine learning algorithms, the h…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

795), GradientBoosting (0.774), DecisionTree (0.773), Logistic (0.771) and gbm (0.771), from high to low. Among the five machine learning algorithms, the highest precision rate of Logistic is 1.000, followed by the gbm (0.487). Machine learning can predict the recurrence of gastric cancer patients after an operation. Besides, the first four factors affecting postoperative recurrence of gastric cancer were BMI, Operation time, WGT and age.This paper describes a recent landslide event, which occurred at Liucheng village in Tianquan County, Sichuan Province, China, on July 15, 2018. The Laochang landslide described in this research is an outstanding and valuable reference for understanding the characteristics of such kind of landslides that are geologically similar to the landslide. The deformation characteristics of the landslide are investigated based on field investigations, drilled boreholes, and exploratory trenches. The 225 residents of 64 households living on the flat platform were threatened by the landslide. Therefore, to guarantee the safety of human life and property becomes the primary emergency task. The anti-sliding piles were taken to stabilize the landslide and mitigate impacts caused by the landslide. Based on the analysis of the monitoring data, the effectiveness of anti-sliding piles is evaluated. The results indicate that the anti-sliding piles are effective in increasing the stability of the landslide, and this work can provide a reference for similar slope engineering projects.Dysregulation of the immune system is one potential mechanism by which acute stress may contribute to downstream disease etiology and psychopathology. Here, we tested the role of β-adrenergic signaling as a mediator of acute stress-induced changes in immune cell gene expression. In a randomized, double-blind, and placebo-controlled trial, 90 healthy young adults (44% female) received a single 40 mg dose of the β-blocker propranolol (n = 43) or a placebo (n = 47) and then completed the Trier Social Stress Test (TSST). Pre- and post-stress blood samples were assayed for prespecified sets of pro-inflammatory and antiviral/antibody gene transcripts. Analyses revealed increased expression of both inflammatory and antiviral/antibody-related genes in response to the TSST, and these effects were blocked by pre-treatment with propranolol. Bioinformatics identified natural killer cells and dendritic cells as the primary cellular context for transcriptional upregulation, and monocytes as the primary cellular carrier of genes downregulated by the TSST. These effects were in part explained by acute changes in circulating cell types. Results suggest that acute psychosocial stress can induce an "acute defense" molecular phenotype via β-adrenergic signaling that involves mobilization of natural killer cells and dendritic cells at the expense of monocytes. This may represent an adaptive response to the risk of acute injury. These findings offer some of the first evidence in humans that β-blockade attenuates psychosocial stress-induced increases in inflammatory gene expression, offering new insights into the molecular and immunologic pathways by which stress may confer risks to health and well-being.Peripheral inflammatory conditions, including those localized to the gastrointestinal tract, are highly comorbid with psychiatric disorders such as anxiety and depression. These behavioral symptoms are poorly managed by conventional treatments for inflammatory diseases and contribute to quality of life impairments. Peripheral inflammation is associated with sustained elevations in circulating glucocorticoid hormones, which can modulate central processes, including those involved in the regulation of emotional behavior. The endocannabinoid (eCB) system is exquisitely sensitive to these hormonal changes and is a significant regulator of emotional behavior. The impact of peripheral inflammation on central eCB function, and whether this is related to the development of these behavioral comorbidities remains to be determined. To examine this, we employed the trinitrobenzene sulfonic acid-induced model of colonic inflammation (colitis) in adult, male, Sprague Dawley rats to produce sustained peripheral inflammation. Colitis produced increases in behavioral measures of anxiety and elevations in circulating corticosterone. These alterations were accompanied by elevated hydrolytic activity of the enzyme fatty acid amide hydrolase (FAAH), which hydrolyzes the eCB anandamide (AEA), throughout multiple corticolimbic brain regions. This elevation of FAAH activity was associated with broad reductions in the content of AEA, whose decline was driven by central corticotropin releasing factor type 1 receptor signaling. Colitis-induced anxiety was reversed following acute central inhibition of FAAH, suggesting that the reductions in AEA produced by colitis contributed to the generation of anxiety. These data provide a novel perspective for the pharmacological management of psychiatric comorbidities of chronic inflammatory conditions through modulation of eCB signaling.Efficient decision-making involves weighing the costs and benefits associated with different actions and outcomes to maximize long-term utility. The medial orbitofrontal cortex (mOFC) has been implicated in guiding choice in situations involving reward uncertainty, as inactivation in rats alters choice involving probabilistic rewards. The mOFC receives considerable dopaminergic input, yet how dopamine (DA) modulates mOFC function has been virtually unexplored. Here, we assessed how mOFC D1 and D2 receptors modulate two forms of reward seeking mediated by this region, probabilistic reversal learning and probabilistic discounting. Separate groups of well-trained rats received intra-mOFC microinfusions of selective D1 or D2 antagonists or agonists prior to task performance. mOFC D1 and D2 blockade had opposing effects on performance during probabilistic reversal learning and probabilistic discounting. D1 blockade impaired, while D2 blockade increased the number of reversals completed, both mediated by changes in errors and negative feedback sensitivity apparent during the initial discrimination of the task, which suggests changes in probabilistic reinforcement learning rather than flexibility. Similarly, D1 blockade reduced, while D2 blockade increased preference for larger/risky rewards. Excess D1 stimulation had no effect on either task, while excessive D2 stimulation impaired probabilistic reversal performance, and reduced both profitable risky choice and overall task engagement. These findings highlight a previously uncharacterized role for mOFC DA, showing that D1 and D2 receptors play dissociable and opposing roles in different forms of reward-related action selection. Elucidating how DA biases behavior in these situations will expand our understanding of the mechanisms regulating optimal and aberrant decision-making.Obsessive-compulsive disorder (OCD) is a frequent, disabling disorder with high rates of treatment resistance. Transcranial direct current stimulation (tDCS) is a safe, tolerable noninvasive neuromodulation therapy with scarce evidence for OCD. This double-blind, randomized, and sham-controlled study investigates the efficacy of tDCS as add-on treatment for treatment-resistant OCD (failure to respond to at least one previous pharmacological treatment). On 20 consecutive weekdays (4 weeks), 43 patients with treatment-resistant OCD underwent 30 min active or sham tDCS sessions, followed by a 8 week follow-up. The cathode was positioned over the supplementary motor area (SMA) and the anode over the left deltoid. The primary outcome was the change in baseline Y-BOCS score at week 12. Secondary outcomes were changes in mood and anxiety and the occurrence of adverse events. Response was evaluated considering percent decrease of baseline Y-BOCS scores and the Improvement subscale of the Clinical Global Impression (CGI-I) between baseline and week 12. Patients that received active tDCS achieved a significant reduction of OCD symptoms than sham, with mean (SD) Y-BOCS score changes of 6.68 (5.83) and 2.84 (6.3) points, respectively (Cohen's d 0.62 (0.06-1.18), p = 0.03). We found no between-group differences in responders (four patients in the active tDCS and one in the sham group). Active tDCS of the SMA was not superior to sham in reducing symptoms of depression or anxiety. Patients in both groups reported mild adverse events. Our results suggest that cathodal tDCS over the SMA is an effective add-on strategy in treatment-resistant OCD.Heterogeneity in the clinical presentation of major depressive disorder and response to antidepressants limits clinicians' ability to accurately predict a specific patient's eventual response to therapy. Validated depressive symptom profiles may be an important tool for identifying poor outcomes early in the course of treatment. To derive these symptom profiles, we first examined data from 947 depressed subjects treated with selective serotonin reuptake inhibitors (SSRIs) to delineate the heterogeneity of antidepressant response using probabilistic graphical models (PGMs). We then used unsupervised machine learning to identify specific depressive symptoms and thresholds of improvement that were predictive of antidepressant response by 4 weeks for a patient to achieve remission, response, or nonresponse by 8 weeks. Four depressive symptoms (depressed mood, guilt feelings and delusion, work and activities and psychic anxiety) and specific thresholds of change in each at 4 weeks predicted eventual outcome at 8 weeks to SSRI therapy with an average accuracy of 77% (p = 5.5E-08). selleck The same four symptoms and prognostic thresholds derived from patients treated with SSRIs correctly predicted outcomes in 72% (p = 1.25E-05) of 1996 patients treated with other antidepressants in both inpatient and outpatient settings in independent publicly-available datasets. These predictive accuracies were higher than the accuracy of 53% for predicting SSRI response achieved using approaches that (i) incorporated only baseline clinical and sociodemographic factors, or (ii) used 4-week nonresponse status to predict likely outcomes at 8 weeks. The present findings suggest that PGMs providing interpretable predictions have the potential to enhance clinical treatment of depression and reduce the time burden associated with trials of ineffective antidepressants. Prospective trials examining this approach are forthcoming.Blunted and exaggerated neuronal response to rewards are hypothesized to be core features of schizophrenia spectrum disorders (SZ) and bipolar disorder (BD), respectively. Nonetheless, direct tests of this hypothesis, in which response between SZ and BD is compared in the same study, are lacking. Here we examined the functional correlates of reward processing during the Incentivized Control Engagement Task (ICE-T) using 3T fMRI. Reward-associated activation was examined in 49 healthy controls (HCs), 52 recent-onset individuals with SZ, and 22 recent-onset individuals with Type I BD using anterior cingulate (ACC), anterior insula, and ventral striatal regions of interest. Significant group X reward condition (neutral vs. reward) interactions were observed during reward anticipation in the dorsal ACC (F(2,120) = 4.21, P = 0.017) and right insula (F(2,120) = 4.77, P = 0.010). The ACC interaction was driven by relatively higher activation in the BD group vs. HCs (P = 0.007) and vs. individuals with SZ (P = 0.010).

Autoři článku: Kragelundfreedman4360 (Devine McBride)