Hooddaniels2642

Z Iurium Wiki

Verze z 25. 8. 2024, 00:45, kterou vytvořil Hooddaniels2642 (diskuse | příspěvky) (Založena nová stránka s textem „The increase of the AC conductivity above 100 GHz could be assigned to the low-frequency wing of proton vibrational modes.The combination of two-dimensiona…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The increase of the AC conductivity above 100 GHz could be assigned to the low-frequency wing of proton vibrational modes.The combination of two-dimensional crystals through the formation of van der Waals bilayers, trilayers, and heterostructures has been considered a promising route to design new materials due to the possibility of tuning their properties through the control of the number of layers, alloying pressure, strain, and other tuning mechanisms. Here, we report a density functional theory study on the interlayer phonon coupling and electronic structure of the trilayer h-BN/SnTe/h-BN, and the effects of pressure on the encapsulation of this trilayer system. Our findings demonstrated the establishment of a type I junction in the system, with a trivial bandgap of 0.55 eV, which is 10 % lower than the free-standing SnTe one. The almost inert h-BN capping layers allow a topological phase transition at a pressure of 13.5 GPa, in which the system evolves from a trivial insulator to a topological insulator. In addition, with further increase of the pressure up to 35 GPa, the non-trivial energy bandgap increases up to 0.30 eV. This behavior is especially relevant to allow experimental access to topological properties of materials, since large non-trivial energy bandgaps are required.The evolution of electrical resistance as function of defect concentration is examined for the unipolar n-conducting oxides CdO, β-Ga2O3, In2O3, SnO2and ZnO in order to explore the predictions of the amphoteric defect model. Intrinsic defects are introduced by ion irradiation at cryogenic temperatures, and the resistance is measured in-situ by current-voltage sweeps as a function of irradiation dose. Temperature dependent Hall effect measurements are performed to determine the carrier concentration and mobility of the samples before and after irradiation. After the ultimate irradiation step, the Ga2O3and SnO2samples have both turned highly resistive. In contrast, the In2O3and ZnO samples are ultimately found to be less resistive than prior to irradiation, however, they both show an increased resistance at intermediate doses. Based on thermodynamic defect charge state transitions computed by hybrid density functional theory, a model expanding on the current amphoteric defect model is proposed.The noninvasive detection of tumor proliferation is of great value and the Ki-67 is a biomarker of tumor proliferation. We hypothesized that radiomics characteristics may be related to tumor proliferation. To evaluate whether computed tomography (CT) radiomics feature analyses could aid in assessing the Ki-67 marker index in hepatocellular carcinoma (HCC), we retrospectively analyzed preoperative CT findings of 74 patients with HCC. The texture feature calculations were computed from MaZda 4.6 software, and the sequential forward selection algorithm was used as the selection method. The correlation between radiomics features and the Ki-67 marker index, as well as the difference between low Ki-67 ( less then 10%) and high Ki-67 (≥10%) groups were evaluated. A simple logistic regression model was used to evaluate the associations between texture features and high Ki-67, and receiver operating characteristic analysis was performed on important parameters to assess the ability of radiomics characteristics to disttures of CT might be used as a noninvasive measure of cellular proliferation in HCC.

High-fidelity vibrokinetic (HFVK) technology is widely used to enhance the immersiveness of audiovisual (AV) entertainment experiences. However, despite evidence that HFVK technology does subjectively enhance AV immersion, the underlying mechanism has not been clarified. Neurophysiological studies could provide important evidence to illuminate this mechanism, thereby benefiting HFVK stimulus design, and facilitating expansion of HFVK technology.

We conducted a between-subjects (VK, N = 11; Control, N = 9) exploratory study to measure the effect of HFVK stimulation through an HFVK seat on electroencephalographic cortical activity during an AV cinematic experience. Subjective appreciation of the experience was assessed and incorporated into statistical models exploring the effects of HFVK stimulation across cortical brain areas. We separately analyzed alpha-band (8-12 Hz) and theta-band (5-7 Hz) activities as indices of engagement and sensory processing, respectively. We also performed theta-band (5-7 Hz) cg a cinematic experience.

The results collectively point to sustained decoherence between sensory and self-processing as a possible mechanism for how HFVK increases immersion, and that coordination of emotional, spatial, and vestibular processing hubs with the motor system may be required for appreciation of the HFVK-enhanced experience. Overall, this study offers the first ever demonstration that HFVK stimulation has a real and sustained effect on brain activity during a cinematic experience.BrachyView is a novel in-body imaging system developed to provide real-time intraoperative dosimetry for low dose rate prostate brachytherapy treatments. Seed positions can be reconstructed after in-vivo implantation using a high-resolution pinhole gamma camera inserted into the patient rectum. The obtained data is a set of 2D projections of the seeds on the image plane. The 3D reconstruction algorithm requires the identification of the seed's centre of mass. This work presents the development and techniques adopted to build an algorithm that provides the means for fully automatic seed centre of mass identification and 3D position reconstruction for real-time applications. The algorithm presented uses a local feature detector, speeded up robust features, to perform detection of brachytherapy seed 2D projections from images, allowing for robust seed identification. Initial results have been obtained with datasets of 30, 96 and 98 I-125 brachytherapy seeds implanted into a prostate gel phantom. It can detect 97% of seeds and correctly match 97% of seeds. The average overall computation time of 2.75 s per image and improved reconstruction accuracy of 22.87% for the 98 seed dataset was noted. Elimination processes for initial false positive detection removal have shown to be extremely effective, resulting in a 99.9% reduction of false positives, and when paired with automatic frame alignment and subtraction procedures allows for the effective removal of excess counts generated by previously implanted needles. The proposed algorithm will allow the BrachyView system to be used as a real-time intraoperative dosimetry tool for low dose rate prostate brachytherapy treatments.

Identifying neural activity biomarkers of brain disease is essential to provide objective estimates of disease burden, obtain reliable feedback regarding therapeutic efficacy, and potentially to serve as a source of control for closed-loop neuromodulation. In Parkinson's disease (PD), microelectrode recordings (MER) are routinely performed in the basal ganglia to guide electrode implantation for deep brain stimulation (DBS). While pathologically-excessive oscillatory activity has been observed and linked to PD motor dysfunction broadly, the extent to which these signals provide quantitative information about disease expression and fluctuations, particularly at short timescales, is unknown. Furthermore, the degree to which informative signal features are similar or different across patients has not been rigorously investigated. We sought to determine the extent to which motor error in PD across patients can be decoded on a rapid timescale using spectral features of neural activity.

Here, we recorded neuralinformation about short-timescale PD motor dysfunction is available in STN neural activity, distributed across various patient-specific spectral components, such that an individualized approach will be critical to fully harness this information for optimal disease tracking and closed-loop neuromodulation.

These results demonstrate that quantitative information about short-timescale PD motor dysfunction is available in STN neural activity, distributed across various patient-specific spectral components, such that an individualized approach will be critical to fully harness this information for optimal disease tracking and closed-loop neuromodulation.We report inelastic neutron scattering (INS) investigations on the bilayer Fe-based superconductor CsCa2Fe4As4F2 above and below its superconducting transition temperature T c ≈ 28.9 K to investigate the presence of a neutron spin resonance. This compound crystallises in a body-centred tetragonal lattice containing asymmetric double layers of Fe2As2 separated by insulating CaF2 layers and is known to be highly anisotropic. Our INS study clearly reveals the presence of a neutron spin resonance that exhibits higher intensity at lower momentum transfer (Q) at 5 K compared to 54 K, at an energy of 15 meV. The energy E R of the observed spin resonance is broadly consistent with the relationship E R = 4.9k B T c, but is slightly enhanced compared to the values observed in other Fe-based superconductors. We discuss the nature of the electron pairing symmetry by comparing the value of E R with that deduced from the total superconducting gap value integrated over the Fermi surface.Tumor-infiltrating neutrophils (TINs), the predominant leukocytes in the tumor microenvironment, are important for cancer-related immunosuppression. Combinations of multiple immune checkpoint inhibitors can significantly improve outcomes in murine glioma models. Here, we investigated TIN levels in human glioma samples and tested the antitumor efficacy of neutrophil depletion alone or in combination with an anti-programmed death 1 (PD-1) antibody. To investigate the clinical relevance, we determined the correlation between tumor grade or survival and TIN levels in 202 resected glioma specimens. TCGA and CGGA data were used to validate the results and analyze the biological functions of TINs in gliomas. An orthotopic xenograft glioma mouse model was used to study the therapeutic effect of anti-PD-1 and/or anti-ly6G. Decreased TIN levels correlated with lower grades, mutant isocitrate dehydrogenase, and favorable prognosis, which was validated by CGGA and TCGA dataset results. Bioinformatics analysis revealed that TINs are mainly involved in angiogenic, inflammatory, and interferon-γ responses in gliomas. TINs were positively correlated with programmed death ligand-1 expression. Cyclophosphamide In xenograft models, combined anti-PD-1 and neutrophil depletion therapy significantly inhibited tumor growth and promoted survival. This study demonstrates that TINs were related to glioma tumorigenesis. Targeting neutrophils could thus enhance the therapeutic effect of PD-1 blockade for gliomas.Neutrophilic asthma (NA) is a distinct airway inflammation disease with prominent neutrophil infiltration. The role played by neutrophil extracellular traps (NETs) in NA, however, is quite unclear. This study was based on the hypothesis that NETs are responsible for the second neutrophil wave and therefore contribute significantly to inflammation. The proinflammatory effects of NETs were evaluated in vitro and in vivo. Formation of NETs and neutrophil swarming was seen in a mouse model of NA. Additionally, NETs were found to stimulate airway cells to express CXCL1, CXCL2, and CXCL8 via the TLR4/NF-κB pathway, which recruits neutrophils to the inflammation site. Furthermore, prevention of NET formation decreased the recruitment of lung neutrophils and hence reduce neutrophilic inflammation. Additionally, the structural integrity of NETs had no effect on the recruitment of lung neutrophils and neutrophilic inflammation. In NA mice, NETs could trigger airway and alveolar epithelial cells to express chemokines which recruit more neutrophils via activation of the TLR4/NF-κB pathway.

Autoři článku: Hooddaniels2642 (Kern Villumsen)