Thompsonfog1061
Regardless of its exploitability in the clinical setting, this metformin action might configure the ER metabolism as a potential target for innovative therapeutic strategies in patients with solid cancers and potentially modifies the current interpretative model of FDG uptake, attributing PET/CT capability to predict cancer aggressiveness to the activation of H6PD catalytic function.Endometriosis is a benign disease affecting one in ten women of reproductive age worldwide. Although the pain level is not correlated to the extent of the disease, it is still one of the cardinal symptoms strongly affecting the patients' quality of life. Yet, a molecular mechanism of this pathology, including the formation of pain, remains to be defined. Recent studies have indicated a close interaction between newly generated nerve cells and macrophages, leading to neurogenic inflammation in the pelvic area. In this context, the responsiveness of an endometriotic cell culture model was characterized upon inflammatory stimulation by employing a multi-omics approach, including proteomics, metabolomics and eicosanoid analysis. Differential proteomic profiling of the 12-Z endometriotic cell line treated with TNFα and IL1β unexpectedly showed that the inflammatory stimulation was able to induce a protein signature associated with neuroangiogenesis, specifically including neuropilins (NRP1/2). Untargeted metabolomic profiling in the same setup further revealed that the endometriotic cells were capable of the autonomous production of 7,8-dihydrobiopterin (BH2), 7,8-dihydroneopterin, normetanephrine and epinephrine. These metabolites are related to the development of neuropathic pain and the former three were found up-regulated upon inflammatory stimulation. Additionally, 12-Z cells were found to secrete the mono-oxygenated oxylipin 16-HETE, a known inhibitor of neutrophil aggregation and adhesion. Thus, inflammatory stimulation of endometriotic 12-Z cells led to specific protein and metabolite expression changes suggesting a direct involvement of these epithelial-like cells in endometriosis pain development.A gene coding for a novel putative amylase, oligo-1,6-glucosidase from a psychrotrophic bacterium Exiguobacterium sibiricum from Siberian permafrost soil was cloned and expressed in Escherichia coli. The amino acid sequence of the predicted protein EsOgl and its 3D model displayed several features characteristic for the cold-active enzymes while possessing an unusually high number of proline residues in the loops-a typical feature of thermophilic enzymes. The activity of the purified recombinant protein was tested with p-nitrophenyl α-D-glucopyranoside as a substrate. The enzyme displayed a plateau-shaped temperature-activity profile with the optimum at 25 °C and a pronounced activity at low temperatures (50% of maximum activity at 5 °C). To improve the thermal stability at temperatures above 40 °C, we have introduced proline residues into four positions of EsOgl by site-directed mutagenesis according to "the proline rule". Two of the mutants, S130P and A109P demonstrated a three- and two-fold increased half-life at 45 °C. Moreover, S130P mutation led to a 60% increase in the catalytic rate constant. Combining the mutations resulted in a further increase in stability transforming the temperature-activity profile to a typical mesophilic pattern. In the most thermostable variant A109P/S130P/E176P, the half-life at 45 °C was increased from 11 min (wild-type) to 129 min.The phosphoprotein P of Mononegavirales (MNV) is an essential co-factor of the viral RNA polymerase L. Its prime function is to recruit L to the ribonucleocapsid composed of the viral genome encapsidated by the nucleoprotein N. JNJ42226314 MNV phosphoproteins often contain a high degree of disorder. In Pneumoviridae phosphoproteins, the only domain with well-defined structure is a small oligomerization domain (POD). We previously characterized the differential disorder in respiratory syncytial virus (RSV) phosphoprotein by NMR. We showed that outside of RSV POD, the intrinsically disordered N-and C-terminal regions displayed a structural and dynamic diversity ranging from random coil to high helical propensity. Here we provide additional insight into the dynamic behavior of PCα, a domain that is C-terminal to POD and constitutes the RSV L-binding region together with POD. By using small phosphoprotein fragments centered on or adjacent to POD, we obtained a structural picture of the POD-PCα region in solution, at the single residue level by NMR and at lower resolution by complementary biophysical methods. We probed POD-PCα inter-domain contacts and showed that small molecules were able to modify the dynamics of PCα. These structural properties are fundamental to the peculiar binding mode of RSV phosphoprotein to L, where each of the four protomers binds to L in a different way.Smith-Lemli-Opitz syndrome (SLOS) is a severe monogenic disorder resulting in low cholesterol and high 7-dehydrocholesterol (7-DHC) levels. 7-DHC-derived oxysterols likely contribute to disease pathophysiology, and thus antioxidant treatment might be beneficial because of high oxidative stress. In a three-year prospective study, we investigated the effects of vitamin E supplementation in six SLOS patients already receiving dietary cholesterol treatment. Plasma vitamin A and E concentrations were determined by the high-performance liquid chromatography (HPLC) method. At baseline, plasma 7-DHC, 8-dehydrocholesterol (8-DHC) and cholesterol levels were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. The clinical effect of the supplementation was assessed by performing structured parental interviews. At baseline, patients were characterized by low or low-normal plasma vitamin E concentrations (7.19-15.68 μmol/L), while vitamin A concentrations were found to be normal or high (1.26-2.68 μmol/L). Vitamin E supplementation resulted in correction or significant elevation of plasma vitamin E concentration in all patients. We observed reduced aggression, self-injury, irritability, hyperactivity, attention deficit, repetitive behavior, sleep disturbance, skin photosensitivity and/or eczema in 3/6 patients, with notable individual variability. Clinical response to therapy was associated with a low baseline 7-DHC + 8-DHC/cholesterol ratio (0.2-0.4). We suggest that determination of vitamin E status is important in SLOS patients. Supplementation of vitamin E should be considered and might be beneficial.Diabetic nephropathy (DN) is the primary cause of end-stage renal disease worldwide. Oxidative stress and mitochondrial dysfunction are central to its pathogenesis. Rice husk, the leftover from the milling process, is a good source of phytochemicals with antioxidant activity. This study evaluated the possible protection of purple rice husk extract (PRHE) against diabetic kidney injury. Type 2 diabetic rats were given vehicle, PRHE, metformin, and PRHE+metformin, respectively, while nondiabetic rats received vehicle. After 12 weeks, diabetic rats developed nephropathy as proven by metabolic alterations (increased blood glucose, insulin, HOMA-IR, triglycerides, cholesterol) and renal abnormalities (podocyte injury, microalbuminuria, increased serum creatinine, decreased creatinine clearance). Treatment with PRHE, metformin, or combination diminished these changes, improved mitochondrial function (decreased mitochondrial swelling, reactive oxygen species production, membrane potential changes), and reduced renal oxidative damage (decreased lipid peroxidation and increased antioxidants). Increased expression of PGC-1α, SIRT3, and SOD2 and decreased expression of Ac-SOD2 correlated with the beneficial outcomes. HPLC revealed protocatechuic acid and cyanidin-3-glucoside as the key components of PRHE. The findings indicate that PRHE effectively protects against the development of DN by retaining mitochondrial redox equilibrium via the regulation of PGC-1α-SIRT3-SOD2 signaling. This study creates an opportunity to develop this agricultural waste into a useful health product for diabetes.Delivery of putative compounds of therapeutic value to the brain is limited by brain barriers the blood-brain barrier located in the endothelium of the brain microvessels (BrMVs) and the blood-cerebrospinal fluid barrier located in the epithelium of the choroid plexus (ChP). Understanding their function and modulation by the circadian clock may enhance the efficacy of brain-targeting therapies. The aim of the present study was to evaluate the stability of 10 reference genes in the BrMV and ChP, isolated from male and female rats at six time points (ZT1, 5, 9, 13, 17, and 21). Gene evaluations were performed by qPCR, analyzed by RefFinder tool, and verified by analyzing the expression of the brain and muscle ARNT-like 1 (Bmal1) using the qPCR and digital PCR methods. We identified as the most stable genes for circadian studies tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (Ywhaz) and apolipoprotein E (Apoe) for BrMV, and beta actin (Actb) and hypoxanthine-guanine phosphoribosyltransferase (Hprt1) for ChP. After verification, ribosomal protein (Rps18) was also included as a sufficient reference gene. Additionally, the observed gender difference in the Bmal1 oscillations in both BrMV and ChP suggests that separate studies for each gender are recommended.The risk of malignant brain tumors associated with metformin use has rarely been investigated in humans. This retrospective cohort study investigated such an association. Patients with new-onset type 2 diabetes mellitus diagnosed from 1999 to 2005 in the nationwide database of Taiwan's national health insurance were used to enroll study subjects. We first identified an unmatched cohort of 153,429 ever users and 16,222 never users of metformin. A cohort of 16,222 ever users and 16,222 never users matched on propensity score was then created from this unmatched cohort. All patients were followed up from 1 January 2006 until 31 December 2011. The incidence density was calculated and hazard ratios were derived from Cox regression incorporated with the inverse probability of treatment weighting using a propensity score. The results showed that 27 never users and 155 ever users developed malignant brain tumors in the unmatched cohort. The incidence rate was 37.11 per 100,000 person-years in never users and 21.39 per 100,000 person-years in ever users. The overall hazard ratio comparing ever users versus never users was 0.574 (95% confidence interval 0.381-0.863). The respective hazard ratios comparing the first (58.33 months) tertiles of cumulative duration of metformin therapy versus never users were 0.897 (0.567-1.421), 0.623 (0.395-0.984), and 0.316 (0.192-0.518). In the matched cohort, the overall hazard ratio was 0.317 (0.149-0.673) and the respective hazard ratios were 0.427 (0.129-1.412), 0.509 (0.196-1.322), and 0.087 (0.012-0.639) for the first, second, and third tertile of cumulative duration of metformin therapy. In conclusion, this study shows a risk reduction of malignant brain tumors associated with metformin use in a dose-response pattern. The risk reduction is more remarkable when metformin has been used for approximately 2-5 years.