Spencerogden2551
To evaluate outcomes following trans-arterial embolization of hypervascular appendicular bony tumors in patients undergoing orthopedic resection by performing a systematic review including data from the authors' institution.
From April 2008 to August 2018, 73 patients (59 males, mean age 58.1years) with musculoskeletal tumors presented for embolization for preoperative devascularization prior to orthopedic surgery. A retrospective chart review was performed to identify demographic, procedural and surgical data. A systematic review of the Pubmed, Medline, and Web of Science databases was performed to identify studies in which pre-operative embolization was performed of appendicular MSK tumors, and with measurements of estimated blood loss. All the variables listed above were recorded. A patient level analysis was performed to determine average estimated blood loss.
58 patients (47 men, 11 women, range 21-84years) were included in our institutional analysis. The median EBL was 500mL (range 100-3000). There was no difference in EBL between RCC (719.6±626.1) and non-RCC groups (855.6±657.5); p=0.44. The median intra-operative transfusion requirement was 1.0 unit (range 0-8±2.06). From 1984 to 2015, 9 studies were identified that provided data for a total of 118 patients (46 males, 42 females, range 10-82years). The mean and median post-surgical EBL across all patients was 976.9±78.5 (SE) and 725mL (range 10-7000), respectively. There were no complications related to non-target embolization.
Preoperative trans-arterial embolization of hypervascular MSK neoplasms appears to be safe and effective in minimizing peri- and post-operative bleeding while keeping transfusion requirements low.
Preoperative trans-arterial embolization of hypervascular MSK neoplasms appears to be safe and effective in minimizing peri- and post-operative bleeding while keeping transfusion requirements low.
Studies have reported that myeloid-derived suppressor cells (MDSCs) contribute to maintain pregnancy. The aim of this case-control study was to test whether there is a dysregulation of peripheral MDSCs in recurrent implantation failure (RIF).
26 RIF patients and 30 controls were recruited. Flow cytometry was applied to characterize polymorphonuclear (PMN)-MDSCs, monocytic-MDSCs (M-MDSCs), effector T cells (Teffs) and regulatory T cells (Tregs) in blood. ELISA was used to define MDSCs correlative cytokines and chemokines in serum from all patients.
Compared with controls, RIF patients showed significant reductions of blood PMN-MDSCs, M-MDSCs, Tregs and NO production by PMN-MDSCs, whereas the expression of ζ chain on CD4
T cell receptor (TCR) and CD8
TCR displayed a remarkable upregulation in RIF patients. Moreover, RIF patients presented a lower concentration of serum chemokine (C-C motif) ligand (CCL) 5 and transforming growth factor (TGF)-β than those from controls. Furthermore, the level of TCR ζ chain on CD4
and CD8
Teffs was negatively correlated not only with the percentage of PMN-MDSCs, but also with the amount of NO produced by PMN-MDSCs. The frequency of PMN-MDSCs had positive correlations with the concentration of CCL5 and TGF-β.
This study indicated that the dysregulation of MDSCs might impair maternal-fetal immune balance thus resulting in RIF.
This study indicated that the dysregulation of MDSCs might impair maternal-fetal immune balance thus resulting in RIF.Quantification of proteins in biofluids has largely involved either traditional ligand binding assays or "bottom-up" mass spectrometry. Recently, top-down mass spectrometry using reversed-phase liquid chromatography (RPLC) paired with high-resolution mass spectrometry (HRMS) has emerged as a promising technique, due to the potential of better identification of post-translational modifications (PTMs), lack of downstream interferences, and less time-consuming sample preparation and analysis times. However, it can be difficult with this approach to robustly obtain high-fidelity MS data, especially when pushing for low limits of detection. To address these issues, we developed a chromatographic device with an optimized form factor and stationary phase to improve protein recovery, while reducing run times. We have observed that by using this device, it is possible to achieve attomole quantitation of mAbs without the addition of carrier proteins and with over three-fold higher throughput than columns employed in previous studies. Moreover, we have devised a novel affinity capture method, based on repurposing a unique aptamer ligand that can give 93% recovery of mAb using only a 2 h incubation. When hyphenated together, these two technologies greatly improve the ability to analyze proteins in complex matrices.The prognosis of patients with advanced oesophageal cancer (EC) and gastric cancer (GC) is poor. Circulating microRNAs (ci-miRNAs) may have prognostic and predictive value to improve patient selection for palliative treatment. The purpose of this study is to assess the prognostic and predictive value of specific ci-miRNAs in plasma of patients with EC and GC treated with first-line palliative gemcitabine and cisplatin. Droplet digital PCR (ddPCR) was used to quantify miR-200c-3p, miR-375, miR-21-5p, miR-148a-3p, miR-146a-5p, miR-141-3p and miR-218-5p in plasma from 68 patients. ci-miRNA expression was analyzed in relation to overall survival (OS), progression-free survival (PFS), and response to chemotherapy. ci-miRNA levels were detectable in 36 baseline (71%) samples and in 14 (47%) follow-up samples. Increased circulating miR-200c-3p in GC showed a trend (p = 0.06) towards a shorter OS. High circulating miR-375 was associated with a longer OS (p = 0.02) in patients with esophageal adenocarcinoma (EAC). No significant difference was observed in ci-miRNA expression between paired pre- and on-treatment samples. ci-miRNA expression was not associated with response to chemotherapy. ci-miRNAs can be measured in plasma samples of patients treated with first-line palliative chemotherapy using ddPCR despite prolonged storage in heparin. Elevated circulating miR-375 might be a prognostic marker for patients with EAC.Seasonal endocrine changes may modify sperm cryoresistance in certain small ruminant species. The present work examines the effect of prolactin (PRL) on ram and buck sperm cryoresistance. A dopamine agonist (bromocriptine [BCR] 60 mg i.m. twice per week from May 15 to June 15, that is, approaching the summer solstice) or antagonist (sulpiride [SLP] 100 mg s.c. daily from December 15 to January 15, that is, around the winter solstice) was administered under solstice-appropriate photoperiod conditions to modify PRL secretion. Control animals received the vehicle only. Compared to the corresponding controls, BCR reduced PRL secretion to basal levels in both the rams and bucks. In rams, the cryoresistance ratios for sperm curvilinear velocity (P less then 0.05) and lateral head displacement (P less then 0.01) were higher for the BCR-treated animals. In bucks, neither the characteristics of fresh nor frozen-thawed sperm were affected by BCR treatment. After the administration of SLP, PRL levels increased and remained high for more than 5 h in the rams though they immediately began to fall in the bucks. By 24 h, PRL had returned to basal concentrations in both species. In rams treated with SLP, the cryoresistance ratios for sperm progressive motility, straight line velocity, sperm mean path velocity, cross beat frequency, and the progression ratios linearity, straightness and oscillation, were all lower compared to the controls (P less then 0.05), while the amplitude of lateral head displacement was higher (P less then 0.01). In bucks, sperm cryoresistance was not affected by SLP administration. Together, these results suggest that high levels of PRL negatively affect the cryoresistance of ram sperm, while buck sperm seems unaffected.Diestrus is associated with insulin resistance in bitches and pyometra can further impair insulin sensitivity. This study aimed to compare insulin sensitivity, insulin binding, and tyrosine kinase activity in bitches in anestrus, diestrus, or with pyometra. Patients submitted to elective ovariohysterectomy were divided into anestrus (n = 11) or diestrus (n = 13) according to reproductive history, vaginal cytology, and uterine histology. The group pyometra (n = 8) included bitches diagnosed with the disease based on clinical presentation and abdominal ultrasound findings and further confirmed by uterine histopathology. All patients were submitted to an intravenous glucose tolerance test (IVGTT) before ovariohysterectomy, and rectus abdominis muscle samples were collected during surgery for plasmatic membrane suspension preparation. Muscle-membranes were submitted to cold saturation insulin binding assay for dissociation constant (Kd) and maximum binding capacity (Bmax) determination, as well as exogenous substrate Poly (Glu Tyr 41) phosphorylation assay for basal tyrosine kinase evaluation. selleck inhibitor Bitches with pyometra showed higher basal insulin (P 0.05). Diestrus' higher Kd values and reduced tyrosine kinase activity in muscle tissue were compensated by increased total insulin binding capacity. Absent differences in IVGTT results between diestrus and anestrus bitches corroborate this finding. However, in bitches with pyometra, the highest Kd values were not compensated by increased total insulin binding capacity. This finding was associated with insulin resistance and glucose intolerance in IVGTT results. Moreover, pyometra resolution restored insulin sensitivity and glucose tolerance. These features can play a key role in pyometra-associated CDM, as well as in diabetic remission after pyometra resolution.Photocatalytic H2O2 production is an innovative on-site H2O2 synthesis method to treat organic pollutants through Fenton-like reactions, avoiding the need and potential liability of H2O2 storage and transportation. Accurate quantification of H2O2 is crucial to explore the mechanism of photocatalytic H2O2 production and optimize reaction parameters. In this work, three common H2O2 quantification methods (i.e., titration with potassium permanganate (KMnO4), and colorimetry with ammonium metavanadate (NH4VO3) or N,N-diethylp-phenylenediamine-horseradish peroxidase (DPD-POD)) were compared and their susceptibility to interference by seven types of representative organics were considered. Interference mechanisms were explored based on the electron-donating (Egap) and electron-accepting (ELUMO) ability of the present organics. The accuracy of the KMnO4 titration method is greatly compromised by aromatic compounds even at 0.1 mM due to the increased KMnO4 consumption by direct oxidation. The presence of p-benzoquinone that directly reacts with NH4VO3 and DPD compromises these colorimetric methods, especially DPD-POD colorimetry at concentrations as low as 0.1 mM. The DPD-POD method should also be scrutinized in the presence of phenols due to significant disturbance by oxidation byproducts (e.g. hydroquinone inducing immediate color disappearance). A flowchart was generated to provide guidelines for selecting an appropriate H2O2 quantification method for different water matrices treated by Fenton-like reactions.