Lepeacock4553

Z Iurium Wiki

Verze z 24. 8. 2024, 21:47, kterou vytvořil Lepeacock4553 (diskuse | příspěvky) (Založena nová stránka s textem „Surface plasmon polaritons (SPPs) give an opportunity to break the diffraction limit and design nanoscale optical components, however their practical imple…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Surface plasmon polaritons (SPPs) give an opportunity to break the diffraction limit and design nanoscale optical components, however their practical implementation is hindered by high ohmic losses in a metal. Here, we propose a novel approach for efficient SPP amplification under electrical pumping in a deep-subwavelength metal-insulator-semiconductor waveguiding geometry and numerically demonstrate full compensation for the SPP propagation losses in the infrared at an exceptionally low pump current density of 0.8 kA/cm2. This value is an order of magnitude lower than in the previous studies owing to the thin insulator layer between a metal and a semiconductor, which allows injection of minority carriers and blocks majority carriers reducing the leakage current to nearly zero. The presented results provide insight into lossless SPP guiding and development of future high dense nanophotonic and optoelectronic circuits.Ultrafast lasers enable a wide range of physics research and the manipulation of short pulses is a critical part of the ultrafast tool kit. Current methods of laser pulse shaping are usually considered separately in either the spatial or the temporal domain, but laser pulses are complex entities existing in four dimensions, so full freedom of manipulation requires advanced forms of spatiotemporal control. We demonstrate through a combination of adaptable diffractive and reflective optical elements - a liquid crystal spatial light modulator (SLM) and a deformable mirror (DM) - decoupled spatial control over the pulse front (temporal group delay) and phase front of an ultra-short pulse was enabled. Pulse front modulation was confirmed through autocorrelation measurements. This new adaptive optics technique, for the first time enabling in principle arbitrary shaping of the pulse front, promises to offer a further level of control for ultrafast lasers.A split nanobeam cavity is theoretically designed and experimentally demonstrated. Compared with the traditional photonic crystal nanobeam cavities, it has an air-slot in its center. Through the longitudinal and lateral movement of half part of the cavity, the resonance wavelength and quality factor are tuned. Instead of achieving a cavity with a large tunable wavelength range, the proposed split nanobeam cavity demonstrates a considerable quality factor change but the resonance wavelength is hardly varied. Using a nanoelectromechanical system (NEMS) comb-drive actuator to control the longitudinal and lateral movement of the split nanobeam cavity, the experimentally-measured change of quality factor agrees well with the simulated value. Meanwhile, the variation range of resonance wavelength is smaller than the full width at half maximum of the resonance. The proposed structure may have potential application in Q-switched lasers.A secondary optimization technique is proposed that allows the complex refractive index and particle size distribution (PSD) to be retrieved simultaneously by using the diffuse transmittance (T), diffuse reflectance (R), and collimated transmittance (T(c)) of a 1-D spherical particle systems as measured values. In the proposed method, two 1-D experimental samples of different thicknesses were exposed to continuous wave lasers of two different wavelengths. First, T, R, and T(c) were calculated by solving the radiative transfer equation. Then, the complex refractive index and PSDs were retrieved simultaneously by applying the inversion technique, quantum particle swarm optimization. However, the estimated results of the PSDs proved to be inaccurate. Hence, a secondary optimization was performed to improve the accuracy of the PSDs on the basis of the first optimization process. The results showed that the proposed technique can estimate the complex refractive index and particle size distribution accurately.Using two-photon (Franson) interferometry, we measure the entanglement of photon pairs generated from an optically-pumped silicon photonic device consisting of a few coupled microring resonators. The pair-source chip operates at room temperature, and the InGaAs single-photon avalanche detectors (SPADs) are thermo-electrically cooled to 234K. Such a device can be integrated with other components for practical entangled photon-pair generation at telecommunications wavelengths.The members of viperidae crotalinae (pit viper) family have special pit organs to detect infrared radiation in normal room conditions, whereas most artificial uncooled infrared focal plane arrays (FPAs) operate only in a vacuum chamber. Dissection shows that the pit membrane is a unique substrate-free structure. The temperature rise advantage of this pit organ was verified in comparison with an assumed substrate pit organ (as an artificial FPA structure). Inspired by the pit viper, we introduced this structure to infrared FPA, replacing the conventional substrate FPA. The substrate-free FPA was fabricated by micro-elctromechanical systems (MEMS) process and placed into an infrared imaging system to obtain thermal images of the human body in atmosphere and vacuum working conditions. We show that the infrared capability of the substrate-free pit organ was achieved.Controlling the focal length and the intensity of the optical focus in the media is an important task. Here we investigate the propagation properties of the sharply autofocused ring Airy Gaussian vortex beams numerically and some numerical experiments are performed. We introduce the distribution factor b into the initial beams, and discuss the influences for the beams. read more With controlling the factor b, the beams that tend to a ring Airy vortex beam with the smaller value, or a hollow Gaussian vortex beam with the larger one. By a choice of initial launch condition, we find that the number of topological charge of the incident beams, as well as its size, greatly affect the focal intensity and the focal length of the autofocused ring Airy Gaussian vortex beams. Furthermore, we show that the off-axis autofocused ring Airy Gaussian beams with vortex pairs can be implemented.We present tailoring of the performances of thin multiplication layer InAlAs/InGaAs avalanche photodetectors (APDs) with operating voltages lower than 20 V. Their operating voltages, gain-voltage slopes and dark currents were successfully tailored by changing the electric field distributions in avalanche region. The thin multiplication layer APDs show small activation energies of the dark current ranging from 0.12 to 0.19 eV at temperatures above 220 K, suggesting a band-trap-band tunneling dominant dark current mechanism over this temperature range. The dark currents show very weak temperature dependences at temperatures lower than 175 K, which mainly originate from the band-to-band tunneling and the surface leakage currents. The spectral responsivity of those APDs show anomalous negative temperature coefficients at gain factors larger than 1, which is attributed to the enhanced phonon scattering effect of carriers in the avalanche region at higher temperatures. Good gain factor uniformity at a given bias is observed for those APDs, and the charge layer is found to help improve the gain uniformity.A new phenomenon involving the entire saturation of unilateral tails of buried channel charge-coupled devices (BCCDs) under laser radiation is observed in this study. A physical model related to this phenomenon is constructed based on the assumption that the charge transfer inefficiency of BCCD is a jump function of signal charge quantity. The profile of a spot tail under laser radiation is simulated using this self-developed model. The simulation results are compared with experimental findings to validate this model.Adiabatic polarization splitter-rotators are investigated exploiting continuous symmetry breaking thereby achieving significant device size and losses reduction in a single mask fabrication process for both SOI channel and ridge waveguides. A crosstalk lower than -25 dB is expected over 300nm bandwidth, making the device suitable for full grid CWDM and diplexer/triplexer FTTH applications at 1310, 1490 and 1550nm.Based on the Fourier method, this paper deduces analytic formulae for interpolation bias in digital image correlation, explains the well-known sinusoidal-shaped curves of interpolation bias, and introduces the concept of interpolation bias kernel, which characterizes the frequency response of the interpolation bias and thus provides a measure of the subset matching quality of the interpolation algorithm. The interpolation bias kernel attributes the interpolation bias to aliasing effect of interpolation and indicates that high-frequency components are the major source of interpolation bias. Based on our theoretical results, a simple and effective interpolation bias prediction approach, which exploits the speckle spectrum and the interpolation transfer function, is proposed. Significant acceleration is attained, the effect of subset size is analyzed, and both numerical simulations and experimental results are found to agree with theoretical predictions. During the experiment, a novel experimental translation technique was developed that implements subpixel translation of a captured image through integer pixel translation on a computer screen. Owing to this remarkable technique, the influences of mechanical error and out-of-plane motion are eliminated, and complete interpolation bias curves as accurate as 0.01 pixel are attained by subpixel translation experiments.In this paper, we develop spatiotemporal coupled-mode theory to describe optical properties of guided-mode resonant gratings. We derive partial differential equations that describe both spatial and temporal evolution of the field inside the grating. These equations describe the coupling of two counter-propagating grating modes, revealing the structure's "dark" and "bright" resonances at normal incidence of light. Moreover, the proposed theory allows us to obtain a simple approximation of the transmission and reflection coefficients taking into account both light's frequency and angle of incidence. This approximation can be considered as the generalization of the Fano line-shape. The approximation is in good agreement with the rigorous computations based on the Fourier modal method. The results of the paper will be useful for design and analysis of guided-mode resonant filters and other photonic devices.Photoinduced reduction of absorption (photobleaching) in bismuth-doped germanosilicate fibers irradiated with 532-nm laser has been observed for the first time. It was demonstrated that bismuth-related active centers having the absorption bands at wavelengths of 1400 and 1700 nm degrade under photoexcitation at 532 nm. The photobleaching process rate was estimated using conventional stretched exponential technique. It was found that the photobleaching rate in bismuth-doped germanosilicate fibers does not depend on type of bismuth-related active center. The possible underlying mechanism of photobleaching process in bismuth-doped fibers is discussed.Amplitude modulated continuous wave time-of-flight range cameras suffer from an inherent depth measurement error due to aliasing of the emitted signal vs reference signal correlation function. This is due to higher harmonics present in both signals which are not accounted for in the model or measurements. This "wiggling" error is generally corrected by employing a correction function based on frequency and depth dependent calibration data. This problem is shown to be equivalent to a multi-path interference problem. Casting the problem into the multi-path interference domain and utilizing multiple modulation frequencies provides tools for dealing with the depth error without calibration in a frequency independent way.

Autoři článku: Lepeacock4553 (Bjerrum Smed)