Schackhorn9224

Z Iurium Wiki

Verze z 24. 8. 2024, 18:38, kterou vytvořil Schackhorn9224 (diskuse | příspěvky) (Založena nová stránka s textem „Besides many studies being focused on energy and transportation systems, the literature review allows to observe that interviews and questionnaires are mos…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Besides many studies being focused on energy and transportation systems, the literature review allows to observe that interviews and questionnaires are most frequently used to gather qualitative data, besides a high percentage of mixed-method research. The article aims to provide a synthesis of literature on qualitative methods used for resilience research in the domain of CIs, detailing lessons learned from such approaches to shed lights on best practices and identify possible future research directions.Grid applications require high power density (for frequency regulation, load leveling, and renewable energy integration), achievable by combining multiple batteries in a system without strict high capacity requirements. For these applications however, safety, cost efficiency, and the lifespan of electrode materials are crucial. Titanates, safe and longevous anode materials providing much lower energy density than graphite, are excellent candidates for this application. The innovative molten salt synthesis approach proposed in this work provides exceptionally pure Na2Ti6O13 nanorods generated at 900-1100 °C in a yield ≥80 wt%. It is fast, cost-efficient, and suitable for industrial upscaling. Electrochemical tests reveal stable performance providing capacities of ≈100 mA h g-1 (Li) and 40 mA h g-1 (Na). Increasing the synthesis temperature to 1100 °C leads to a capacity decrease, most likely resulting from 1) the morphology/volume change with the synthesis temperature and 2) distortion of the Na2Ti6O13 tunnel structure indicated by electron energy-loss and Raman spectroscopy. The suitability of pristine Na2Ti6O13 as the anode for grid-level energy storage systems has been proven a priori, without any performance-boosting treatment, indicating considerable application potential especially due to the high yield and low cost of the synthesis route.Electrification is progressing significantly within the present and future vehicle sectors such as large commercial vehicles (e.g., trucks and buses), high-altitude long endurance (HALE), high-altitude pseudosatellites (HAPS), and electric vertical take-off and landing (eVTOL). The battery systems' performance requirements differ across these applications in terms of power, cycle life, system cost, etc. However, the need for high gravimetric energy density, 400 Wh kg-1 and beyond, is common across them all, as it enables vehicles to achieve extended range, a longer mission duration, lighter weight, or increased payload. The system-level requirements of these emerging applications are broken down into the component-level developments required to integrate Li-S technology as the power system of choice. To adapt batteries' properties, such as energy and power density, to the respective application, the academic research community has a key role to play in component-level development. However, materials and component research must be conducted within the context of a viable Li-S cell system. Herein, the key performance benefits, limitations, modeling, and recent progress of the Li-S battery technology and its adaption toward real-world application are discussed.Antioxidant food additives were routinely used for increasing the keeping quality of packaged food items. Butylated Hydroxyanisole (BHA) is one of the most widely used synthetic phenolic antioxidants of such kind. Although quantity of antioxidants in packaged eatables and admissible daily intake (ADI) per person per day are limited by laws, the urbanisation and changes in lifestyle has cross these limits. Although studies on BHA has been carried out, there exists a great deal of uncertainty about the exact molecular mechanism of interaction of BHA with various receptors in the body. Since earlier reports suggested BHA plausibly interferes with reproductive system development, we opted docking of critical receptors of endogenous hormones controlling growth and development of reproductive system with BHA. Nuclear receptors of estrogen (ER), androgen (AR) and progesterone (PR) were selected for this purpose. This manuscript describes the comparison of binding pattern of BHA towards AR, ER and PR along with their agonists and antagonist. Lamarckian Genetic Algorithm of AutoDock 4.0 was used for analysing the mode of binding of ligands with the receptors. It is evident form the docking studies that, BHA exhibited similar binding pattern` with antagonists of AR and agonists of ER. But the interaction of BHA with PR was not compatible with either agonists or antagonists. The docking patterns produced could reliably demonstrate the interactions of BHA with selected receptors and also predict its possible agonistic and antagonistic action.The present study was conducted to molecularly characterize the biofilm associated ompA gene from the drug resistant strains of A. baumannii and its immuno-dominant vaccine epitope predictions through immuno-informatic approach. ompA was amplified by PCR from the genomic DNA and was sequenced. Using the ORF, ompA protein sequence was retrieved and was subjected for IEDB T cell and B cell epitope analysis for the selection of the epitope peptides. Selected peptides were evaluated using appropriate servers and tools to assess the propensity for its antigenicity, solubility, physico-chemical property, toxigenicity and class-I immunogenicity. AZ32 clinical trial MHC class I and II restriction of HLA alleles was also performed. 48% (n = 24) of the strains possessed ompA gene. Protein structure was successfully retrieved with the selection of two epitopes viz., E1- FDGVNRGTRGTSEEGTLGNA and E2-KLSEYPNATARIEGHTDNTGPRKL. Final docking with TLR-2, showed E2 as the best epitope candidate predicted with the highest number of hydrogen bonds.Alzheimer's disease (AD) is one of the major neurodegenerative diseases whose underlying risk factors are yet to be fully understood. However, reduced cellular level of cholinesterase, as well as formation and deposition of amyloid plaques (Aβ) are thought to play critical roles in the pathogenesis of AD. Therefore, increases in cholinergic transmitter levels via cholinesterase (ChE) inhibitors as well as inhibition of amyloid plaques formation and aggregation via beta secretase-1 (BACE1) inhibitors have been proposed as treatment for this disease. This study was aimed at investigating the BACE1 and ChE inhibitory properties of compounds from Cajanus cajan and Citrus reticulata based on their traditional connection with the management of neurodegenerative diseases, coupled with their protective effects on chemical-induced cognitive impairment. Using in silico methods, one hundred and nineteen compounds from C. cajan and C. reticulata were docked with acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and BACE1 using Vina. Molecular interactions of the top-ranked compounds for the 3 protein targets were viewed with Discovery Studio, followed by characterization of their ADME properties using the Swiss online ADME web tool. Among the one hundred and ninety nine compounds screened, 3 compounds, genistin (76), naphthalen-2-yl-acetic acid, 6-hydroxy-6-methyl-cyclodecyl ester (94) and vitexin (119) have remarkable binding affinity for the three protein targets and passed the oral drugability test, while only naphthalen-2-yl-acetic acid, 6-hydroxy-6-methyl-cyclodecyl ester (94) exhibited BBB permeation property. Genistin and vitexin from C. cajan and naphthalen-2-yl-acetic acid, 6-hydroxy-6-methyl-cyclodecyl ester from C. reticulata possibly contributed, at least in part, to the neurotherapeutic potentials of these plants.Cannabis sativa L. Cannabaceae, used for psychoactive rituals in Mesopotamia. Here, we investigated in vitro inhibitory activity of methyl alcohol extract derived from leaves and resin of cannabis against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Moreover, the binding affinity (BA; kcal/mol) of selected phytochemicals of cannabis to AChE and BChE has been predicted in silico. Phytochemicals of cannabis had acceptable BA towards AChE ranging from  - 6.4 (beta-pinene) to  - 11.4 (campesterol) and BChE ranging from  - 5.5 (alpha-pinene) to  - 9.8 (cannabioxepane). All cannabinoids, flavonoids (apigenin), terpenes, and phytosterols of cannabis were double inhibitors due they utilized hydrogen bonds and hydrophobically interacted with both catalytic triad and peripheral anionic site (PAS) of AChE and BChE. Campesterol is phytosterol docked with AChE and BChE via hydrogen bond and it will be a lead-like molecule for further drug design. Delta-9-Tetrahydrocannabinolic acid has been docked with AChE and BChE and it can be a candidate molecule for further drug design. To sum up, this study not only approved cholinesterase inhibitory effects of cannabis but also suggested an array of phytocompounds as hit small molecules for discovery or design of ecofriendly botanical antiinsectants or phytonootropic drugs.

The online version contains supplementary material available at 10.1007/s40203-021-00075-0.

The online version contains supplementary material available at 10.1007/s40203-021-00075-0.Objective Diabetic patients suffer more frequently from biofilm-associated infections than normoglycemic patients. Well described in the literature is a relationship between elevated blood glucose levels in patients and the occurrence of biofilm-associated wound infections. Nevertheless, the underlying pathophysiological pathways leading to this increased infection vulnerability and its effects on biofilm development still need to be elucidated. We developed in our laboratory a model to allow the investigation of a biofilm-associated wound infection in diabetic mice under controlled insulin treatment. Methods A dorsal skinfold chamber was used on 16 weeks old BKS.Cg-Dock7m +/+ Leprdb/J mice and a wound within the observation field of the dorsal skinfold chamber was created. These wounds were infected with Staphylococcus aureus ATCC 49230 (106 cells/mL). Simultaneously, we implanted implants for sustained insulin release into the ventral subcutaneous tissue (N=5 mice). Mice of the control group (N=5) were trea reproducible biofilm infections in the animals. Discussion We developed a novel model to assess interactions between blood glucose level and S. aureus-induced biofilm-associated wound infections. The combination of the dorsal skinfold chamber model with a sustained insulin treatment has not been described so far. It allows a broad field of glucose and insulin dependent studies of infection.The aim of this paper is twofold. First, black hole algorithm (BHA) is proposed as a new training algorithm for feedforward neural networks (FNNs), since most traditional and metaheuristic algorithms for training FNNs suffer from the problem of slow coverage and getting stuck at local optima. BHA provides a reliable alternative to address these drawbacks. Second, complementary learning components and Levy flight random walk are introduced into BHA to result in a novel optimization algorithm (BHACRW) for the purpose of improving the FNNs' accuracy by finding optimal weights and biases. Four benchmark functions are first used to evaluate BHACRW's performance in numerical optimization problems. Later, the classification performance of the suggested models, using BHA and BHACRW for training FNN, is evaluated against seven various benchmark datasets iris, wine, blood, liver disorders, seeds, Statlog (Heart), balance scale. Experimental result demonstrates that the BHACRW performs better in terms of mean square error (MSE) and accuracy of training FNN, compared to standard BHA and eight well-known metaheuristic algorithms whale optimization algorithm (WOA), biogeography-based optimizer (BBO), gravitational search algorithm (GSA), genetic algorithm (GA), cuckoo search (CS), multiverse optimizer (MVO), symbiotic organisms search (SOS), and particle swarm optimization (PSO).

Autoři článku: Schackhorn9224 (Schneider Goldstein)