Papeashley9493
Long-acting injectable (LAI) drug products enable the controlled release of a drug over an extended duration of time to improve the therapeutic effect, safety profile, or administration of an injectable product. The development of generic [505(j)] and differentiated [505(b)(2)] LAI products helps to provide patients and healthcare providers with more treatment options and to reduce overall healthcare costs, including those associated with drug product administration and patient compliance. In this review, we analyze the landscape of LAI products and identify the most common technical challenges that potential generic product entrants face. We focus on five formulation technologies that account for ~90% of approved LAI products, including those eligible for generic product registration over the next five years, to illustrate technology-specific challenges. We then review efforts from the U.S. Food and Drug Administration (FDA) to promote more generic product competition and emphasize the importance of collaboration among government, industry, and academia to advance the knowledge and capabilities of the scientific community. Regulatory bodies, industry, and academia are encouraged to anticipate challenges with emerging innovative LAI technologies and to leverage the experiences built on established technologies to foster generic product development.Nanotechnology-based health products are providing innovative solutions in health technologies and the pharmaceutical field, responding to unmet clinical needs. However, suitable standardised methods need to be available for quality and safety assessments of these innovative products prior to their translation into the clinic and for monitoring their performance when manufacturing processes are changed. The question arises which technological solutions are currently available within the scientific community to support the requested characterisation of nanotechnology-based products, and which methodological developments should be prioritized to support product developers in their regulatory assessment. To this end, the work presented here explored the state-of-the-art methods to identify methodological gaps associated with the preclinical characterisation of nanotechnology-based medicinal products and medical devices. The regulatory information needs, as expressed by regulatory authorities, were extracted fromelopment for those areas where no technological solutions currently exist. The results of the analysis presented in this work should raise awareness within the scientific community on existing and emerging methodological needs, setting priorities for the development and standardisation of relevant analytical and toxicological methods allowing the development of a robust testing strategy for nanotechnology-based health products.Exosomes are cell-derived vesicles that act as carriers for proteins and nucleic acids, with therapeutic potential and high biocompatibility. We propose a new concept of exosome-like liposomes for controlled delivery. The goal of this work was to develop a new type of liposomes with a unique mixture of phospholipids, similar to naturally occurring exosomes but overcoming their limitations of heterogeneity and low productivity, for therapeutic delivery of bioactive compounds. Curcumin was chosen as model compound, as it is a phytochemical molecule known to have antioxidant and anti-inflammatory properties, which can protect the brain against oxidative stress and reduce β-amyloid accumulation, major hallmarks of Alzheimer's disease (AD). These new liposomes can efficiently encapsulate hydrophobic curcumin, yielding particles with a size smaller than 200 nm, and a polydispersity index lower than 0.20, which make them ideal for crossing the blood-brain barrier. These particles have a long shelf life, being stable up to 6 months. The curcumin encapsulation efficiency was higher than 85% (up to approximately 94%). Curcumin-loaded liposomes were not cytotoxic (up to 20 μM curcumin, and 200 μM of exo-liposomes), and significantly reduced oxidative stress induced in SH-SY5Y neuronal cells, indicating their potential for neuroprotection. They also do not show any toxicity and are internalized in zebrafish embryos, concentrating in lipid enriched areas, as the brain and the yolk sac. Such innovative carriers are a new effective approach to deliver drugs into the brain, as these are stable, protect the cargo and are uptaken by neuronal cells. Upon internalization, liposomes release the therapeutic biomolecules, resulting in successful neuroprotection, being a positive alternative strategy for AD therapy.The primary cilium is a specialized plasma membrane protrusion with important receptors for signalling pathways. In polarized epithelial cells, the primary cilium assembles after the midbody remnant (MBR) encounters the centrosome at the apical surface. The membrane surrounding the MBR, namely remnant-associated membrane patch (RAMP), once situated next to the centrosome, releases some of its lipid components to form a centrosome-associated membrane patch (CAMP) from which the ciliary membrane stems. The RAMP undergoes a spatiotemporal membrane refinement during the formation of the CAMP, which becomes highly enriched in condensed membranes with low lateral mobility. To better understand this process, we have developed a correlative imaging approach that yields quantitative information about the lipid lateral packing, its mobility and collective assembly at the plasma membrane at different spatial scales over time. Our work paves the way towards a quantitative understanding of the spatiotemporal lipid collective assembly at the plasma membrane as a functional determinant in cell biology and its direct correlation with the membrane physicochemical state. These findings allowed us to gain a deeper insight into the mechanisms behind the biogenesis of the ciliary membrane of polarized epithelial cells.Aflatoxin M1 (AFM1) and ochratoxin A (OTA) are pernicious mycotoxins widely co-existing in the environment. However, nephrotoxicity and underlying mechanism induced by AFM1 coupled with OTA still remain to be explored. In this study, CD-1 mice were treated with 3.5 mg/kg b.w. AFM1, OTA, and AFM1 + OTA for 35 days, and UPLC-MS-based metabolomics method was effectuated to investigate metabolomic profiles of mice kidney. HO-3867 manufacturer Subsequent experiments on human renal proximal tubular (HK-2) cells were performed to dig out the causal connections between distinguished differential metabolites and nephrotoxicity. Compared with DMSO vehicle group, all three toxin treatments (AFM1 and OTA alone, and in combination) significantly reduced final body weight, and remarkably elevated the concentration of serum creatinine (SCr) and caused abnormal histological phenotypes (shown by histopathological slices). OTA, AFM1 + OTA but not AFM1 reduced the relative weight index of kidney. These phenotypic results indicated that AFM1 and OTAogether, this study is the first effort trying to assess nephrotoxicity of AFM1 with OTA, and we guessed that OTA had a more pronounced toxicity to kidney in contrast to AFM1. No obvious synergism between AFM1 and OTA was found to contribute to the occurrence or development of nephropathy. LysoPC (160) might be the pivotal metabolite in response to single OTA and combined AFM1 + OTA engendering renal injury.Timing abilities help organizing the temporal structure of events but are known to change systematically with age. Yet, how the neuronal signature of temporal predictability changes across the age span remains unclear. Younger (n = 21; 23.1 years) and older adults (n = 21; 68.5 years) performed an auditory oddball task, consisting of isochronous and random sound sequences. Results confirm an altered P50 response in the older compared to younger participants. P50 amplitudes differed between the isochronous and random temporal structures in younger, and for P200 in the older group. These results suggest less efficient sensory gating in older adults in both isochronous and random auditory sequences. N100 amplitudes were more negative for deviant tones. P300 amplitudes were parietally enhanced in younger, but not in older adults. In younger participants, the P50 results confirm that this component marks temporal predictability, indicating sensitive gating of temporally regular sound sequences.Synthetic glucocorticoids (sGCs) such as dexamethasone (DEX), while used to mitigate inflammation and disease progression in premature infants with severe bronchopulmonary dysplasia (BPD), are also associated with significant adverse neurologic effects such as reductions in myelination and abnormalities in neuroanatomical development. Ciclesonide (CIC) is a sGC prodrug approved for asthma treatment that exhibits limited systemic side effects. Carboxylesterases enriched in the lower airways convert CIC to the glucocorticoid receptor (GR) agonist des-CIC. We therefore examined whether CIC would likewise activate GR in neonatal lung but have limited adverse extra-pulmonary effects, particularly in the developing brain. Neonatal rats were administered subcutaneous injections of CIC, DEX or vehicle from postnatal days 1-5 (PND1-PND5). Systemic effects linked to DEX exposure, including reduced body and brain weight, were not observed in CIC treated neonates. Furthermore, CIC did not trigger the long-lasting reduction in myelin basic protein expression in the cerebral cortex nor cerebellar size caused by neonatal DEX exposure. Conversely, DEX and CIC were both effective at inducing the expression of select GR target genes in neonatal lung, including those implicated in lung-protective and anti-inflammatory effects. Thus, CIC is a promising, novel candidate drug to treat or prevent BPD in neonates given its activation of GR in neonatal lung and limited adverse neurodevelopmental effects. Furthermore, since sGCs such as DEX administered to pregnant women in pre-term labor can adversely affect fetal brain development, the neurological-sparing properties of CIC, make it an attractive alternative for DEX to treat pregnant women severely ill with respiratory illness, such as with asthma exacerbations or COVID-19 infections.Spontaneous face touching (sFST) is an ubiquitous behavior that occurs in people of all ages and all sexes, up to 800 times a day. Despite their high frequency, they have rarely been considered as an independent phenomenon. Recently, sFST have sparked scientific interest since they contribute to self-infection with pathogens. This raises questions about trigger mechanisms and functions of sFST and whether they can be prevented. This systematic comprehensive review compiles relevant evidence on these issues. Facial self-touches seem to increase in frequency and duration in socially, emotionally as well as cognitively challenging situations. They have been associated with attention focus, working memory processes and emotion regulating functions as well as the development and maintenance of a sense of self and body. The dominance of face touch over other body parts is discussed in light of the proximity of hand-face cortical representations and the peculiarities of facial innervations. The results show that underlying psychological and neuro-physiological mechanisms of sFST are still poorly understood and that various basic questions remain unanswered.