Cahillkinney9723
The aim of the present study was to evaluate the effect of different carbon sources on the hydrocarbon-like volatile organic compounds (VOCs) of Fusarium verticillioides strain 7600 through a Principal Component Analysis approach, and to explore their diesel potential by using data from the literature. The fungus was cultivated in GYAM culture medium, and five carbon sources were evaluated glucose, sucrose, xylose, lactose, and fructose. The VOCs were collected using a close-loop apparatus and identified through GC-MS. The same profile of 81 VOCs was detected with all treatments, but with different relative percentages among carbon sources. The production of branched-chain alkanes (30 compounds) ranged from 25.80% to 38.64%, straight-chain alkanes (12 compounds) from 22.04% to 24.18%, benzene derivatives (12 compounds) from 7.48% to 35.58%, and the biosynthesis of branched-chain alcohols (11 compounds) was from 6.82% to 16.71%, with lower values for the remaining groups of VOCs. Our results show that F. verticillioides has the metabolic potential to synthesize diesel-like VOCs. Further research should include the optimization of culture conditions other than carbon sources to increase the production of certain groups of VOCs.In studying the development of tolerance to common hospital cleaners (Oxivir® and CaviCide™) in clinical isolate stocks of the emerging, multidrug-resistant yeast pathogen Candida auris, we selected for a cleaner-tolerant subpopulation of a more common nosocomial pathogen, Candida glabrata. Through the purification of each species and subsequent competition and other analyses, we determined that C. glabrata is capable of readily dominating mixed populations of C. auris and C. glabrata when exposed to hospital cleaners. This result suggests that exposure to antimicrobial compounds can preferentially select for low-level, stress-tolerant fungal pathogens. These findings indicate that clinical disinfection practices could contribute to the selection of tolerant, pathogenic microbes that persist within healthcare settings.Gummy stem blight caused by Stagonosporopsis cucurbitacearum is the most destructive disease of muskmelon cultivation. This study aimed to induce disease resistance against gummy stem blight in muskmelon by Trichoderma asperelloides PSU-P1. This study was arranged into two crops. Spore suspension at a concentration of 1 × 106 spores/mL of T. asperelloides PSU-P1 was applied to muskmelon to investigate gene expression. The expression of PR genes including chitinase (chi) and β-1,3-glucanase (glu) were determined by reverse transcription quantitative polymerase chain reaction (RT-qPCR), and enzyme activity was assayed by the DNS method. The effects of T. asperelloides PSU-P1 on growth, yield, and postharvest quality of muskmelon fruit were measured. A spore suspension at a concentration of 1 × 106 spore/mL of T. asperelloides PSU-P1 and S. cucurbitacearum was applied to muskmelons to determine the reduction in disease severity. The results showed that the expression of chi and glu genes in T. asperelloides PSU-y in muskmelon plants.Rhizosphere fungi have the beneficial functions of promoting plant growth and protecting plants from pests and pathogens. In our preliminary study, rhizosphere fungus JP-NJ4 was obtained from the soil rhizosphere of Pinus massoniana and selected for further analyses to confirm its functions of phosphate solubilization and plant growth promotion. In order to comprehensively investigate the function of this strain, it is necessary to ascertain its taxonomic position. With the help of genealogical concordance phylogenetic species recognition (GCPSR) using five genes/regions (ITS, BenA, CaM, RPB1, and RPB2) as well as macro-morphological and micro-morphological characters, we accurately determined the classification status of strain JP-NJ4. The concatenated phylogenies of five (or four) gene regions and single gene phylogenetic trees (ITS, BenA, CaM, RPB1, and RPB2 genes) all show that strain JP-NJ4 clustered together with Talaromyces brevis and Talaromyces liani, but differ markedly in the genetic distance (in BenA gene) from type strain and multiple collections of T. brevis and T. liani. The morphology of JP-NJ4 largely matches the characteristics of genes Talaromyces, and the rich and specific morphological information provided by its colonies was different from that of T. brevis and T. liani. In addition, strain JP-NJ4 could produce reduced conidiophores consisting of solitary phialides. From molecular and phenotypic data, strain JP-NJ4 was identified as a putative novel Talaromyces fungal species, designated T. nanjingensis.The relationship between psoriasis and onychomycosis is controversial, and the exact nature of this association remains to be clearly elucidated. In healthy nails, the compact nail plate acts as a barrier, preventing any infection. In psoriatic nails, the nail plate involvement, together with abnormalities in the blood capillaries, may lead to decreased natural defenses against microorganisms. Moreover, onycholysis (detachment of the nail plate) induces a humid environment that may favor fungal proliferation. Treatment with immunosuppressive drugs may additionally enhance onychomycosis. In this comprehensive review, we present data regarding the incidence and pathogenic action of dermatophytes and other fungi in the development of fungal infection in psoriatic nails.Rice sheath blight, caused by Rhizoctonia solani, is one of the major rice diseases. In order to better understand the inhibitory mechanism of lauric acid on the disease, RNA sequencing (RNA-Seq) was used to analyze the transcriptome changes in Rhizoctonia solani treated with lauric acid for 3 h, 6 h, 18 h, and 24 h, including 2306 genes; 1994 genes; 2778 genes; and 2872 genes. Based on gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, we found that protein processing in endoplasmic reticulum (KO04141), carbon metabolism (KO01200), and starch and sucrose metabolism were significantly enriched. Most oxidoreductase, dehydrogenase, reductase, and transferase genes are downregulated in this process. Lauric acid can affect ergosterol content, mitochondrial membrane potential collapse, hydrogen peroxide content, electrolyte leakage, reactive oxygen species balance, and can induce endoplasmic reticulum (ER) stress. Lauric acid also increased the expression levels of ER chaperone glucose regulatory protein Grp78 (BIP), protein disulfide isomerase (PDI), and Calpain (CNX), and decreased the expression levels of HSP40, HSP70, and HSP90 genes. HOIPIN-8 price Lauric acid affected the ergosterol content in the cell membrane of R. solani, which induces ER stress and increases the BiP level to induce the apoptosis of Rhizoctonia solani. These results indicated that lauric acid could be used to control rice sheath blight.Pleosporales is the largest fungal order with a worldwide distribution in terrestrial and aquatic environments. During investigations of saprobic fungi associated with mango (Mangifera indica) in Baoshan and Honghe, Yunnan, China, fungal taxa belonging to pleosporales were collected. Morphological examinations and phylogenetic analyses of ITS, LSU, SSU, rpb2 and tef1-α loci were used to identify the fungal taxa. A new genus, Mangifericomes; four new species, namely Mangifericomes hongheensis, Neomassaria hongheensis, Paramonodictys hongheensis, and Paramonodictys yunnanensis; and six new host and country records, namely Byssosphaeria siamensis, Crassiparies quadrisporus, Paradictyoarthrinium aquatica, Phaeoseptum mali, Torula fici, and Vaginatispora amygdali, are introduced. Photoplates, full descriptions, and phylogenetic trees to show the placement of new and known taxa are provided.Copper-based preparations have been used for more than 100 years in viticulture to control downy mildew caused by Plasmopara viticola. LC2017, and a new low-copper-based formulation, has been developed to control grapevine trunk diseases (GTDs). Previous greenhouse studies showed the potential of LC2017 to control GTDs by both fungistatic and plant defense elicitor effects. Here, we further characterize the effects of LC2017 in the field determining its impact on (i) incidence of Esca, (ii) the vine microbiome, (iii) the vine physiology and (iv) enological parameters of juices. We observed a progressive decrease of cumulate Esca incidence in treated vines over the years with annual fluctuation related to the known erratic emergence of GTD symptoms. Neither harmful effects of LC2017 on the vine microbiota, nor on vine physiology were observed (at both transcriptomic and metabolomic levels). Similarly, no impact of LC2017 was observed on the enological properties of berries except for sugar content in juice from esca-diseased vines. The most important result concerns the transcriptomic profiles that of diseased and LC2017 treated vines differs from that of disease untreated ones, showing a treatment effect. Moreover, the transcriptomic profile of diseased and LC2017-treated vines is similar to that of untreated asymptomatic vines, suggesting control of the disease.Terbinafine resistance in Trichophyton species has emerged and appears to be increasing. A new EUCAST susceptibility testing method and tentative ECOFFs were recently proposed for Trichophyton. Terbinafine resistance and target gene mutations were detected in 16 Danish isolates in 2013-2018. In this study, samples/isolates submitted for dermatophyte susceptibility testing 2019-2020 were examined. Species identification (ITS sequencing for T. mentagrophytes/T. interdigitale species complex (SC) isolates), EUCAST MICs and squalene epoxidase (SQLE) profiles were obtained. Sixty-three isolates from 59 patients were included. T. rubrum accounted for 81% and T. mentagrophytes/T. interdigitale SC for 19%. Approximately 60% of T. rubrum and T. mentagrophytes/interdigitale SC isolates were terbinafine non-wildtype and/or had known/novel SQLE mutations with possible implications for terbinafine MICs. All infections with terbinafine-resistant T. mentagrophytes/interdigitale SC isolates were caused by Trichophyton indotineae. Compared to 2013-2018, the number of patients with terbinafine-resistant Trichophyton isolates increased. For T. rubrum, this is partly explained by an increase in number of requests for susceptibility testing. Terbinafine-resistant T. indotineae was first detected in 2018, but accounted for 19% of resistance (4 of 21 patients) in 2020. In conclusion, terbinafine resistance is an emerging problem in Denmark. Population based studies are warranted and susceptibility testing is highly relevant in non-responding cases.Spot blotch caused by Bipolaris sorokiniana is a destructive disease of wheat worldwide. This study investigated the aggressiveness of B. sorokiniana isolates from different wheat-growing areas of Bolu province in Turkey on the cultivar Seri-82. Host susceptibility of 55 wheat cultivars was evaluated against the most aggressive isolate. Our results indicated that the cultivars Anafarta and Koç-2015 were the most resistant. A specific and sensitive qPCR assay was developed for detecting the pathogen in plant tissues and evaluating wheat plants with different resistance levels. Three primer sets, BsGAPDHF/BsGAPDHR, BsITSF/BsITSR, and BsSSUF/BsSSUR, were designed based on glyceraldehyde-3-phosphate dehydrogenase, internal transcribed spacers, and 18S rRNA loci of B. sorokiniana with detection limits of 1, 0.1, and 0.1 pg of pathogen DNA, respectively. The qPCR assay was highly sensitive and did not amplify DNA from the other closely related fungal species and host plants. The protocol differentiated wheat plants with varying degrees of resistance.