Goodmanpower6341
Triboelectric charging is defined as the phenomenon of charge transfer between two different material surfaces when they are brought into contact and separated. AZD4547 chemical structure The focus of this research is the development of a Discrete Element Method (DEM) based simulation model to predict tribocharging during hopper discharge. Due to decreased particle-wall interactions and reduced particle wall contact times, net charges generated during hopper discharge are low. The simulation model confirmed this effect and was implemented to predict the triboelectric behavior of glass beads and MCC particles during hopper flow, along with the prediction of percent charged and uncharged particles. Approximately one-third of the particles were predicted to remain uncharged during the hopper discharge simulations for mono-dispersed particles, thus rendering a comparatively high amount of charge distribution into a small concentration of materials. The DEM model acted as a tool to predict charges that can be generated during hopper discharge at a specified geometry, with a potential to mitigate particle charging, when used for appropriate selection of hopper angles, and hopper wall materials.Mucus penetration and intestinal cells targeting are two main strategies to improve insulin oral delivery efficiency. However, few studies are available regarding the effectiveness of combining these two strategies into one nano-delivery system. For this objective, the folic acid (FA) decorated virus-mimicking nanoparticles were designed and influence of FA graft ratio on the in vitro and in vivo properties of insulin loaded nanoparticles was studied systemically. Firstly, using folic acid as active ligand, different folic acid grafted chitosan copolymers (FA-CS) were synthesized and characterized. Thereafter, using insulin-loaded poly(n-butylcyanoacrylate) nanoparticles as the core, virus-mimicking nanoparticles were fabricated by coating of positively charged FA-CS copolymer and negatively charged hyaluronic acid. Irrespective of the FA graft ratio, all the nanoparticles showed good stability, similar insulin release in the gastrointestinal fluid, excellent and similar penetration in mucus. The nanoparticles permeability in intestine was FA graft ratio and segment dependent, with FA graft ratio at/over 12.51% presenting better effect in the order of duodenum > jejunum ≈ ileum. Both mechanism studies and confocal microscopy observation demonstrated FA-mediated process was involved in the transport of FA decorated nanoparticles. In vivo studies revealed hypoglycemic effect of the nanoparticles was FA graft ratio dependent, a saturation phenomenon was observed when FA graft ratio was at/over 12.51%. In conclusion, folic acid decorated virus-mimicking nanoparticles presented improved insulin absorption, implying combining mucus penetration and active transcellular transport is an effective way to promote oral insulin absorption, while the modification ratio of active ligand needs optimization.In recent times, numerous efforts have been put forward to fabricating the self-propelling micro-/nano-motors (MNMs) for various applications, such as drug delivery, environmental remediation, biosensing, and precision surgery at the micro-/nanoscale, among others. Owing to their potential advantages, the application of such innovative architectures has been increasingly recognized towards addressing various challenges in the related fields. Specifically, these MNMs offer enormous potential in nanomedicine in overcoming the significant challenge of low permeation of the biological barriers. Herein, we emphasize the powered mechanism of MNMs, including artificial and natural-based MNMs, and discuss the characteristics, as well as the challenges being faced by MNMs in drug delivery. Further, the research progress of MNMs as drug carriers in different environments (gastrointestinal tract, saliva, urinary bladder, blood, and extracellular matrix, ECM) of the body in recent years is summarized, highlighting the representative works on MNMs towards in vivo applications. Together, we firmly believe that these innovative MNMs-based designs may play a crucial role in the clinical practice in the future.Wounds are prone to bacterial infections, which cause a delayed healing process. Regarding the emergence of bacterial resistance to common antibiotics, using natural antimicrobial agents can be beneficial. Chitosan is a biological polymer, which has shown partial antioxidant and antimicrobial activities. In this study, core-shell nanofibrous scaffolds composed of chitosan (CS)/polyvinyl alcohol (PVA) as the core and polyvinylpyrrolidone (PVP)/ maltodextrin (MD) as the shell were developed. Satureja mutica (S. mutica) or Oliveria decumbens (O. decumbens) essential oil (EO) was encapsulated into the core of the produced scaffolds. The broth microdilution analysis showed significant antimicrobial activity of the EOs. The SEM analysis indicated that the unloaded and loaded core-shell scaffolds with S. mutica or O. decumbens EO had a uniform, beadless structure with fiber mean diameters of 210 ± 50, 250 ± 45, and 225 ± 46 nm, respectively. The CS/PVA-PVP/MD and CS/PVA/EO-PVP/MD scaffolds indicated suitable mechanical properties. The addition of the studied EOs enhanced the antioxidant activity of the scaffolds. The antimicrobial test of produced scaffolds showed that loading of 10% S. mutica or O. decumbens EO could broaden the microbicidal activity of the CS/PVA-PVP/MD scaffolds. These results revealed that the CS/PVA/EO-PVP/MD nanofibrous scaffolds are promising candidates for wound dressing.Scleral and corneal membranes represent substantial barriers against drug delivery to the eye. Conventional hypodermic needles-based intraocular injections are clinically employed to overcome these barriers. This study, for the first time, investigated a non-invasive alternative to intraocular injections by laser irradiation of ocular tissues. The P.L.E.A.S.E.® laser device was applied on excised porcine scleral and corneal tissues, which showed linear relationships between depths of laser-created micropores and laser fluences at range 8.9-444.4 J/cm2. Deeper and wider micropores were observed in scleral relative to corneal tissues. The permeation of rhodamine B and fluorescein isothiocyanate (FITC)-dextran were investigated through ocular tissues at different laser parameters (laser fluences 0-44.4 J/cm2 and micropore densities 7.5 and 15%). Both molecules showed enhanced permeation through ocular tissues on laser irradiation. Maximum transscleral permeation of the molecules was attained at laser fluence 8.9 J/cm2 and micropore density 15%. Transcorneal permeation of rhodamine B increased with increasing either laser fluence or micropore density, while that of FITC-dextran was not affected by either parameter. The transscleral water loss increased significantly after laser irradiation then returned to the baseline values within 24 h, indicating healing of the laser-created micropores. Laser irradiation is a promising technique to enhance intraocular delivery of both small and large molecule drugs.RALA is a cationic amphipathic peptide which has shown great promise as an efficient, multifunctional delivery system for the delivery of nucleic acids. Rational peptide design was utilised in this study to understand the essential amino acids required for delivery and if any improvements to the RALA peptide could be made. Six amphipathic peptides were synthesised with strategic sequences and amino acid substitutions to reduce peptide sequence, while maintaining the functional characteristics of RALA including amphipathicity, alpha-helicity and pH responsiveness for endosomal escape. Data demonstrated that all six peptides complexed pEGFP-N1 to produce cationic nanoparticles less then 200 nm in diameter, but not all peptides resulted in successful transfection; indicating the influence of peptide design for cellular uptake and endosomal escape. Pep2, produced nanoparticles with similar characteristics and transfection efficiency to the parent peptide, RALA. However, Pep2 had issues with toxicity and a lack of pH-responsive alpha-helcity. Therefore, RALA remains the superior sequence for non-toxic gene delivery.
Direct oral anticoagulants (DOACs) are superior to vitamin K antagonists (VKAs) for the prevention of stroke in atrial fibrillation (AF) patients with elevated stroke risk. Possible antiarrhythmic effects of DOACs have been discussed. We analyzed impact of DOAC treatment on recurrence-free survival after AF catheter ablation.
Two-hundred and thirty-nine consecutive patients (median age 57 [IQR 48-64] years, 26.4% female) undergoing ablation for paroxysmal AF were included into this study. 68.6% of them received DOACs (DOAC group), 31.4% VKA (VKA group). The primary outcome was arrhythmia-free one-year survival.
DOAC patients had lower BMI, shorter history of AF, less arterial hypertension, less vascular disease, less use of antiarrhythmics and consequently lower CHA
DS
-VASc and HAS-BLED Scores. There was no difference in arrhythmia-free survival between DOAC and VKA groups (DOAC 86.6%, VKA 76.7%, p=0.286).
Despite baseline characteristics favouring a better outcome of DOAC patients, arrhythmia-free survival was similar in both groups. Consequently, DOAC treatment did not have clinically relevant antiarrhythmic properties in these patients.
Despite baseline characteristics favouring a better outcome of DOAC patients, arrhythmia-free survival was similar in both groups. Consequently, DOAC treatment did not have clinically relevant antiarrhythmic properties in these patients.
Evaluate the validity of the Kids-Balance Evaluation Systems Test (Kids-BESTest) clinical criteria for the Functional Reach Test (FRT) forward and lateral with laboratory measures of postural control in children with cerebral palsy (CP).
Psychometric study of face, concurrent, and content validity.
Clinical laboratory.
Children (N=58) aged 7-18 years (ambulant CP n=17, typically developing [TD] n=41).
Not applicable.
Stability limits in standing were assessed using the Kids-BESTest items for FRT forwards (FRT
), FRT lateral preferred (FRT
), and FRT lateral nonpreferred (FRT
). Force platforms and kinematic markers were used to collect information on center of pressure (CoP) and joint movement during reach. Analyses included face validity (Kids-BESTest scores compared between CP and TD groups), concurrent validity (agreement between Kids-BESTest scores and digitally derived scores), and content validity (relations between Kids-BESTest scores with kinematic and CoP data).
Face validity of KidsThe FRTFORWARD demonstrated face, concurrent, and content validity. The FRTLATERAL(P/NP) demonstrated concurrent validity, but partial face and content validity. To improve validity of Kids-BESTest FRT criteria, additional descriptors have been added under the scoring criteria to enable clinicians to quantify observed reach strategies.
Traumatic spinal cord injury (TSCI) is a life altering event most often causing permanent physical disability. Little is known about the risk of developing Alzheimer disease and related dementia (ADRD) among middle-aged and older adults living with TSCI. Time to diagnosis of and adjusted hazard for ADRD was assessed.
Cohort study.
Using 2007-2017 claims data from the Optum Clinformatics Data Mart, we identified adults (45+) with diagnosis of TSCI (n=7019). Adults without TSCI diagnosis were included as comparators (n=916,516). Using age, sex, race/ethnicity, cardiometabolic, psychological, and musculoskeletal chronic conditions, US Census division, and socioeconomic variables, we propensity score matched persons with and without TSCI (n=6083). Incidence estimates of ADRD were compared at 4 years of enrollment. Survival models were used to quantify unadjusted, fully adjusted, and propensity-matched unadjusted and adjusted hazard ratios (HRs) for incident ADRD.
Adults with and without TSCI (N=6083).
Not applicable.