Mcgrawwarren8561

Z Iurium Wiki

Verze z 23. 8. 2024, 14:47, kterou vytvořil Mcgrawwarren8561 (diskuse | příspěvky) (Založena nová stránka s textem „The results identify sky-compass cues triggering learning-dependent versus -independent neuronal plasticity during the behavioural transition from interior…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The results identify sky-compass cues triggering learning-dependent versus -independent neuronal plasticity during the behavioural transition from interior workers to outdoor foragers.A better understanding of the genetic and phenotypic architecture underlying life-history variation is a longstanding aim in biology. Theories suggest energy metabolism determines life-history variation by modulating resource acquisition and allocation trade-offs, but the genetic underpinnings of the relationship and its dependence on ecological conditions have rarely been demonstrated. The strong genetic determination of age-at-maturity by two unlinked genomic regions (vgll3 and six6) makes Atlantic salmon (Salmo salar) an ideal model to address these questions. Using more than 250 juveniles in common garden conditions, we quantified the covariation between metabolic phenotypes-standard and maximum metabolic rates (SMR and MMR), and aerobic scope (AS)-and the life-history genomic regions, and tested if food availability modulates the relationships. We found that the early maturation genotype in vgll3 was associated with higher MMR and consequently AS. Additionally, MMR exhibited physiological epistasis; it was decreased when late maturation genotypes co-occurred in both genomic regions. Contrary to our expectation, the life-history genotypes had no effects on SMR. Furthermore, food availability had no effect on the genetic covariation, suggesting a lack of genotype-by-environment interactions. Our results provide insights on the key organismal processes that link energy use at the juvenile stage to age-at-maturity, indicating potential mechanisms by which metabolism and life-history can coevolve.Mutations with beneficial effects in one sex can have deleterious effects in the other. Such 'sexually antagonistic' (SA) variants contribute to variation in life-history traits and overall fitness, yet their genomic distribution is poorly resolved. Theory predicts that SA variants could be enriched on the X chromosome or autosomes, yet current empirical tests face two formidable challenges (i) identifying SA selection in genomic data is difficult; and (ii) metrics of SA variation show persistent biases towards the X, even when SA variants are randomly distributed across the genome. Here, we present an unbiased test of the theory that SA variants are enriched on the X. We first develop models for reproductive FST-a metric for quantifying sex-differential (including SA) effects of genetic variants on lifetime reproductive success-that control for X-linked biases. Comparing data from approximately 250 000 UK Biobank individuals to our models, we find FST elevations consistent with both X-linked and autosomal SA polymorphisms affecting reproductive success in humans. However, the extent of FST elevations does not differ from a model in which SA polymorphisms are randomly distributed across the genome. We argue that the polygenic nature of SA variation, along with sex asymmetries in SA effects, might render X-linked enrichment of SA polymorphisms unlikely.Slow-fast differences in cognition among individuals have been proposed to be an outcome of the speed-accuracy trade-off in decision-making. Based on the different costs associated with acquiring information via individual and social learning, we hypothesized that slow-fast cognitive differences would also be tied to the adoption of these different learning modes. Since foragers in honeybee colonies likely have both these information acquisition modes available to them, we chose to test them for interindividual differences in individual and social learning. By measuring performance on a learning task with and without a social cue and quantifying learning rate and maximum accuracy in these two tasks, our results show the existence of a speed-accuracy trade-off in both the individual and the social learning contexts. However, the trade-off is steeper during individual learning, which was slower than social learning but led to higher accuracy. Most importantly, our results also show that bees that attained high accuracy on the individual learning task had low accuracy on the social learning task and vice versa. We discuss how these two information acquisition strategies tie to slow-fast differences in cognitive phenotypes and how they might contribute to division of labour and social behaviour.Although life-history trade-offs are central to life-history evolution, their mechanistic basis is often unclear. Traditionally, trade-offs are understood in terms of competition for limited resources among traits within an organism, which could be mediated by signal transduction pathways at the level of cellular metabolism. Nevertheless, trade-offs are also thought to be produced as a consequence of the performance of one activity generating negative consequences for other traits, or the result of genes or pathways that simultaneously regulate two life-history traits in opposite directions (antagonistic pleiotropy), independent of resource allocation. Yet examples of genes with antagonistic effects on life-history traits are limited. This study provides direct evidence for a gene-RLS1, that is involved in increasing survival in nutrient-limiting environments at a cost to immediate reproduction in the single-celled photosynthetic alga, Chlamydomonas reinhardtii. Specifically, we show that RLS1 mutants are unable to properly suppress their reproduction in phosphate-deprived conditions. Although these mutants have an immediate reproductive advantage relative to the parental strain, their long-term survival is negatively affected. Our data suggest that RLS1 is a bona fide life-history trade-off gene that suppresses immediate reproduction and ensures survival by downregulating photosynthesis in limiting environments, as part of the general acclimation response to nutrient deprivation in photosynthetic organisms.Genetic exchanges between closely related groups of organisms with different adaptations have well-documented beneficial and detrimental consequences. In plants, pollen-mediated exchanges affect the sorting of alleles across physical landscapes and influence rates of hybridization. How these dynamics affect the emergence and spread of novel phenotypes remains only partially understood. Here, we use phylogenomics and population genomics to retrace the origin and spread of two geographically overlapping ecotypes of the African grass Alloteropsis angusta. In addition to an ecotype inhabiting wetlands, we report the existence of a previously undescribed ecotype inhabiting Miombo woodlands and grasslands. The two ecotypes are consistently associated with different nuclear groups, which represent an advanced stage of divergence with secondary low-level gene flow. However, the seed-transported chloroplast genomes are consistently shared by distinct ecotypes inhabiting the same region. These patterns suggest that the nuclear genome of one ecotype can enter the seeds of the other via occasional pollen movements with sorting of nuclear groups in subsequent generations. The contrasting ecotypes of A. angusta can thus use each other as a gateway to new locations across a large part of Africa, showing that hybridization can facilitate the geographical dispersal of distinct ecotypes of the same grass species.One key event in insect evolution was the development of mandibles with two joints, which allowed powerful biting but restricted their movement to a single degree of freedom. These mandibles define the Dicondylia, which constitute over 99% of all extant insect species. It was common doctrine that the dicondylic articulation of chewing mandibles remained unaltered for more than 400 million years. We report highly modified mandibles overcoming the restrictions of a single degree of freedom and hypothesize their major role in insect diversification. These mandibles are defining features of parasitoid chalcid wasps, one of the most species-rich lineages of insects. The shift from powerful chewing to precise cutting likely facilitated adaptations to parasitize hosts hidden in hard substrates, which pose challenges to the emerging wasps. We reveal a crucial step in insect evolution and highlight the importance of comprehensive studies even of putatively well-known systems.Collective behaviour has a critical influence on group social structure and organization, individual fitness and social evolution, but we know little about whether and how it changes in anthropogenic environments. Here, we show multiple and varying effects of urban space-use upon group-level processes in a primate generalist-the chacma baboon (Papio ursinus)-within a managed wild population living at the urban edge in the City of Cape Town, South Africa. In natural space, we observe baboon-typical patterns of collective behaviour. By contrast, in urban space (where there are increased risks, but increased potential for high-quality food rewards), baboons show extreme flexibility in collective behaviour, with changes in spatial cohesion and association networks, travel speeds and group coordination. However, leader-follower roles remain robust across natural and urban space, with adult males having a disproportionate influence on the movement of group members. Their important role in the group's collective behaviour complements existing research and supports the management tactic employed by field rangers of curbing the movements of adult males, which indirectly deters the majority of the group from urban space. Our findings highlight both flexibility and robustness in collective behaviour when groups are presented with novel resources and heightened risks.Colour constancy refers to the constant perceived or apparent colour of a surface despite changes in illumination spectrum. Laboratory measurements have often found it imperfect. The aim here was to estimate the frequency of constancy failures in natural outdoor environments and relate them to colorimetric surface properties. A computational analysis was performed with 50 hyperspectral reflectance images of outdoor scenes undergoing simulated daylight changes. For a chromatically adapted observer, estimated colour appearance changed noticeably for at least 5% of the surface area in 60% of scenes, and at least 10% of the surface area in 44% of scenes. Somewhat higher frequencies were found for estimated changes in perceived colour relations represented by spatial ratios of cone-photoreceptor excitations. These estimated changes correlated with surface chroma and saturation. Outdoors, the colour constancy of some individual surfaces seems likely to fail, particularly if those surfaces are colourful.Energetic cost of growth determines how much food-derived energy is needed to produce a given amount of new biomass and thereby influences energy transduction between trophic levels. Growth and development are regulated by hormones and are therefore sensitive to changes in temperature and environmental endocrine disruption. Here, we show that the endocrine disruptor bisphenol A (BPA) at an environmentally relevant concentration (10 µgl-1) decreased fish (Danio rerio) size at 30°C water temperature. Under the same conditions, it significantly increased metabolic rates and the energetic cost of growth across development. By contrast, BPA decreased the cost of growth at cooler temperatures (24°C). BPA-mediated changes in cost of growth were not associated with mitochondrial efficiency (P/O ratios (i.e. Colivelin adenosine diphosphate (ADP) used/oxygen consumed) and respiratory control ratios) although BPA did increase mitochondrial proton leak. In females, BPA decreased age at maturity at 24°C but increased it at 30°C, and it decreased the gonadosomatic index suggesting reduced investment into reproduction.

Autoři článku: Mcgrawwarren8561 (Lynge Grau)