Coughlinwolf4607

Z Iurium Wiki

Verze z 23. 8. 2024, 11:23, kterou vytvořil Coughlinwolf4607 (diskuse | příspěvky) (Založena nová stránka s textem „This review collects scientific data considering application areas, toxicity, sources, environmental occurrence and the fate of synthetic organic dyes and…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

This review collects scientific data considering application areas, toxicity, sources, environmental occurrence and the fate of synthetic organic dyes and the ecological implications of synthetic organic dyes presence in the total environment. Moreover, analytical methods for dye determination and methods for dye removal from wastewater are described. The rate constants of carbonate radical anion (CO3-) reaction with organic molecules, mainly of environmental interest, were collected from the literature and structure effects were discussed together with methods of rate constant determination and reaction mechanisms. These rate constants are essential for modelling chemical processes taking place with participation of reactive radicals in the environment determining the persistence of certain toxic compounds. The rate constants span over a very wide range from 102 to 109 mol-1 dm3 s-1, but, even the highest values are smaller by a factor of 2-5 as the diffusion controlled limit. This survey shows that only those molecules have high rate constants in the 107-109 mol-1 dm3 s-1 range which have special electron rich part(s). These molecules are removed selectively in CO3- reactions. Such electron rich moiety is the NH2 group attached to an aromatic ring. High vales were measured e.g., for most of anilines or the sulfonamide antibiotics. -CO group attached to the N-atom (in acetanilides and in phenylurea herbicides), or strong electron withdrawing substituents on benzene ring strongly decrease the rate constant. High values were also measured for aromatic molecules with dissociated -OH group (O-, phenoxides). The thioether group (e.g., in amino acids, or in fenthion or phorate insecticides) also activates the molecules in CO3- reactions. AM2282 In this study, we characterize the structural variation of the microbiota of Mytilus galloprovincialis at the tissue scale, also exploring the connection with the microbial ecosystem of the surrounding water. Mussels were sampled within a farm located in the North-Western Adriatic Sea and microbiota composition was analyzed in gills, hemolymph, digestive glands, stomach and foot by Next Generation Sequencing marker gene approach. Mussels showed a distinctive microbiota structure, with specific declinations at the tissue level. Indeed, each tissue is characterized by a distinct pattern of dominant families, reflecting a peculiar adaptation to the respective tissue niche. For instance, the microbiota of the digestive gland is characterized by Ruminococcaceae and Lachnospiraceae, being shaped to ferment complex polysaccharides of dietary origin into short-chain fatty acids, well matching the general asset of the animal gut microbiota. Conversely, the gill and hemolymph ecosystems are dominated by marine microorganisms with aerobic oxidative metabolism, consistent with the role played by these tissues as an interface with the external environment. Our findings highlight the putative importance of mussel microbiota for different aspects of host physiology, with ultimate repercussions on mussel health and productivity. Aquatic ecosystems face serious pollution issues. link2 Discharges of toxic substances and eutrophication may lead to changes in the phytoplankton community and foster cyanobacterial blooms. Glyphosate-based herbicides are chemical stressors of microalgae that may affect the structure of phytoplankton communities, and also stimulate the synthesis of cyanotoxins by cyanobacteria. The simultaneous presence of glyphosate and toxigenic cyanobacteria increases the stress on microalgae, jointly affecting their growth and development. This study evaluated the combined effect of a toxigenic cyanobacterium and glyphosate in the development of an experimental microalgal community. We studied the effect of Microcystis aeruginosa on the population growth of the microalgae Ankistrodesmus falcatus, Chlorella vulgaris, Pseudokirchneriella subcapitata, and Scenedesmus incrassatulus. We also evaluated the combined effect of sub-inhibitory glyphosate (Faena®) concentrations on the content of macromolecules and the enzymes superoxideical stress. These results illustrate the potential damage to phytoplankton expected in anthropically eutrophic water bodies that are also polluted by glyphosate. Gambierdiscus spp. can produce the polyketide compound, ciguatoxin (CTX), and are hence responsible for ciguatera fish poisoning (CFP). link3 Studying the molecular mechanism that regulates CTX production is crucial for understanding the environmental trigger of CTX as well as for better informing fishery management. Commonly, polyketide synthases are important for polyketide synthesis; however, no gene has been confirmatively assigned to CTX production. Here, suppression subtractive hybridization (SSH) and transcriptome sequencing (RNA-Seq) were used to compare a CTX-producing strain with a non-CTX-producing strain. Using both methods, a total of 52 polyketide synthase (PKS) genes were identified to be up-regulated in the CTX-producing G. balechii, including transcripts encoding single-domain PKSs as well as transcripts encoding multi-domain PKSs. Using reverse transcription quantitative PCR, the expression of these genes in the CTX-producing strain and in nitrogen-limited cultures of the strain was further documented. These data suggest that PKSs are likely involved in polyketide synthesis and potentially in CTX synthesis in this dinoflagellate species. Our study provides the candidate biomarkers for the detection of CTXs or CFP in waters or any other organisms as well as a valuable genomic resource for the research on Gambierdiscus and other dinoflagellates. The Ames test is one of the most widely used mutagenicity tests. It employs histidine auxotrophic bacteria, which can mutate back to histidine prototrophy and, thus, grow on a histidine deficient medium. These mutants develop predominantly after adding a mutagenic compound during an initial growth phase on 1 mg/L histidine. In the established test systems, an endpoint determination is performed to determine the relative number of mutants. An alternative Ames test, the Ames RAMOS test, has been developed, which enables the online detection of mutagenicity by monitoring respiration activity. The reproducibility of the newly developed test system was investigated. A strong dependence of the test results on the inoculum volume transferred from the preculture was found. The more inoculum was needed to reach the required initial OD, the more mutagenic a positive control was evaluated. This effect was attributed to the histidine transfer from the preculture to the original Ames RAMOS test. The same problem is evident in the Ames fluctuation test. High reproducibility of the Ames RAMOS test could be achieved by performing the preculture on minimal medium with a defined histidine concentration and termination after histidine depletion. By using 5 mg/L initial histidine within the minimal medium, a higher separation efficiency between negative control and mutagenic samples could be achieved. This separation efficiency could be further increased by lowering the cultivation temperature from 37 to 30 °C, i.e. lowering the maximum growth rate. The optimized Ames RAMOS test was then transferred into a 48-well microtiter plate format (μRAMOS) for obtaining a high throughput test. The online detection of mutagenicity leads to a reduction of working time in the laboratory. Due to the optimization of reproducibility and the increase in separation efficiency, a sound mutagenicity evaluation, even of weak mutagenic compounds, can be achieved. Hydrothermal carbonization represents a promising technique for transforming microalgae into the hydrochar with abundant phytoavailable nutrients. However, the effects of microalgae-derived hydrochars on the gaseous nitrogen (N) loss from agricultural field are still unclear. Chlorella vulgaris powder (CVP) and two Chlorella vulgaris-derived hydrochars that employ water (CVHW) or citrate acid solution (CVHCA) as the reaction medium were applied to a soil column system grown with rice. The temporal variations of nitrous oxide (N2O) emissions and ammonia (NH3) volatilization were monitored during the whole rice-growing season. Results showed that CVHW and CVHCA addition significantly increased the grain yield (by 13.5-26.8% and 10.5-23.4%) compared with control and CVP group, while concomitantly increasing the ammonia volatilization (by 53.8% and 72.9%) as well as N2O emissions (by 2.17- and 2.82-fold) from paddy soil compared to control. The microbial functional genes (AOA, AOB, nirk, nirS, nosZ) in soil indicated that CVHW and CVHCA treatment stimulated the nitrification and denitrification, and inhibited the N2O oxidation in soil. Notably, CVHW was recommended in the view of improving yield and controlling NH3 volatilization because no significant difference of the yield-scale NH3 volatilization was detected between control and CVHW treatment. This study for the first time uncovered that Chlorella vulgaris-derived hydrochars have positive effects on rice N utilization and growth but negative effects on the atmospheric environment. The excellent potential of nanoscale zero-valent iron (nZVI) makes it a promising remedy for contaminated aquifers. More efficient remediation modes with nZVI have been investigated recently to overcome the inherent drawbacks of materials. In this study, a double surfactant-modified synthesis method is established to make the removal of Cr(VI) more efficiency. A specific focus of the materials status (suspension or powder) is devoted to explore the best application condition, especially for groundwater remediation. A non-ionic surfactant, polyvinylpyrrolidone (PVP), and an anionic surfactant, sodium oleate (NaOA), were selected to modify nZVI simultaneously. The kinetics and isotherm experiments, reactions at different pHs, initial concentrations, gas conditions, and coexisting ion conditions were conducted to analyse the removal mechanism. The characterizations before and after the reaction were used to further explain the results. From the batch experiments, a synergistic effect could be recognized in Cr(VI) elimination when PVP and NaOA were both used for nZVI modification. The materials in suspension (without drying process) exhibited higher removal efficiency in comparison with powder ones. These reactions happened in acidic condition demonstrated higher reactivity. The anaerobic condition facilitated the reaction, which showed prospect application in groundwater. Equilibrium could be reached within 2 min using the suspension sample with a removal efficiency above 99.5% and a maximum removal amount of 231.75 mg g-1. The reaction process was well-fitted with pseudo-second-order kinetics and the Langmuir model. Cr(VI) was fully transformed into Cr(III), a safer status. These results show this is a promising in-situ method to eliminate Cr(VI) pollution in groundwater. This study developed a green and novel magnetic biochar via the co-pyrolysis of firwood biomass pre-treated with 10% (w/w) of either solid-phase (admixing; G10BCA) or liquid-phase (impregnation; G10BCI) goethite mineral (α-FeOOH). Newly fabricated magnetic biochars were characterized by inductively coupled plasma-optical emission spectroscopy (ICP-OES), Brunauer-Emmett-Teller (BET) equipment, X-ray powder diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), proximate and elemental analyzer, and vibrating sample magnetometry. The effects of magnetic precursor, iron loading, and aqua-treatments on recoverability, magnetic property, and stability (resistance to α-FeOOH reconstructive crystallization/dissolution reactions) were explored and compared to those of magnetic biochar derived from conventional ferric chloride precursor (F10BCI). Results confirmed a direct correlation between biochar yields and ash contents with iron loading, irrespective of the used types of magnetic precursors (α-FeOOH or FeCl3).

Autoři článku: Coughlinwolf4607 (Lamm Corcoran)