Stewartrivers0347

Z Iurium Wiki

Verze z 21. 8. 2024, 21:25, kterou vytvořil Stewartrivers0347 (diskuse | příspěvky) (Založena nová stránka s textem „Acute myeloid leukemia (AML) is a group of heterogeneous hematologic malignancies correlates with poor prognosis. It is important to identify biomarkers fo…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Acute myeloid leukemia (AML) is a group of heterogeneous hematologic malignancies correlates with poor prognosis. It is important to identify biomarkers for effective treatment of AML. Kinases participate in many regulatory pathways and biological activities in AML. Previous studies demonstrated that MAP4K1, a serine/threonine kinase, was associated with immune regulation and cancer progression. However, its role and mechanism in acute myeloid leukemia (AML) have not been explored.

RNA-seq profiling was performed for Homoharringtonine (HHT)-resistant and Homoharringtonine (HHT)-sensitive cell lines. Bioinformatic tools were used for differential analysis. Cell culture and transfection, Cell proliferation, apoptosis and Cell cycle assay, Quantitative RT-PCR, and Western blotting analysis were used to explore biological phenotypes in vitro.

We found that MAP4K1 was highly expressed in HHT-induced resistant AML cell lines. In addition, overexpression of MAP4K1 in AML cells induced resistance of AML cells a and refractory AML. Fundings This work was supported by the National Natural Science Foundation of China (NSFC) (Grant No.81800199, 81670124, 82070118) and the Natural Science Foundation of Zhejiang Province (LY20H080008).

Subtotal meningioma resection (STR) is often performed to minimize surgical morbidity. Nevertheless, only a few studies have reported on patient outcome after STR. We studied the long-term outcome of SIV (Simpson grade IV) resection and identified predictive factors of overall survival (OS), progression-free survival (PFS) and time to progression (TTP).

A retrospective analysis was performed on 68 patients who underwent SIV resection of meningioma (grade I) from 2004 to 2010. Data were collected from clinical, surgical and pathology records and radiological imaging. Long-term outcomes were evaluated at least 10 years after surgery.

Permanent morbidity was 11.8%, 30-day mortality 2.9% and progression rate 50.0% for a median follow-up duration of 126.6 months. Median TTP was 86.2 months. Adjuvant SRS was the only significant factor associated with longer PFS (p=0.0052) and TTP (p=0.0079). read more Higher age (p=0.0022), KPS (p=0.0182), postoperative ECOG score (p=0.0182) were reliable predictors of shortened OS and aSRS (p=0.0445) was reliable predictor of longer OS.

STR in intracranial meningioma is still viable and often the only treatment option available in high-risk patients or high-risk tumors. Although surgical morbidity and mortality are high, the OS rate was 85.3% at 5 years and 79.4% at 10 years. Because of the considerable progression rate and rather a long term OS the adjuvant SRS should be considered following SIV resection.

STR in intracranial meningioma is still viable and often the only treatment option available in high-risk patients or high-risk tumors. Although surgical morbidity and mortality are high, the OS rate was 85.3% at 5 years and 79.4% at 10 years. Because of the considerable progression rate and rather a long term OS the adjuvant SRS should be considered following SIV resection.Since the early days of plant biology, small molecule hormones have held a central place in our understanding of development. A key feature of plant hormone action is the ability to regulate multiple developmental processes. Despite this pleiotropy, decades of genetic and molecular studies have shown that plant hormone signaling is often canalized through a core pathway. This raises the difficult question of how one signaling pathway produces different outputs in different tissues. Drawing on examples from gibberellin and strigolactone signaling pathways, we propose this conceptual problem arises from an upside-down perspective of hormone signaling. Recent studies have revealed hormone and core pathway-independent mechanisms of regulating downstream signaling components, which could explain multiple developmental responses to the same hormone.Polychlorinated biphenyls (PCBs) are a common category of persistent man-made organic pollutants that are widespread in the ambient environment. Although Lemna minor L. is an extensively applied plant for aquatic remediation in ecotoxicology research worldwide, little is known regarding its responses to the potentially toxic effects of PCBs. For this study, a 14-day dissolved exposure was conducted to explore the effects of 2,4,4'- trichlorobiphenyl (PCB-28) on the growth, photosynthesis characteristics and antioxidant defense system of L. minor plants. We found that 100 and 200 μg/L of PCB-28 decreased the fresh weight, chlorophyll and protein content, and activities of superoxide dismutase, peroxidase, glutathione S-transferase, and nitroreductase, whereas plasma membrane permeability, and the malondialdehyde and reactive oxygen species concentrations were increased. However, it was observed that 5 and 20 μg/L of PCB-28 had no significant effects on these physiological indices. The ultra-structure of chloroplast demonstrated that 100 and 200 μg/L PCB-28 severely damaged the chloroplast structures. Moreover, correlation analysis revealed that the content of reactive oxygen species had negative correlations with the fresh weight, chlorophyll and protein content, as well as the activities of superoxide dismutase, peroxidase, glutathione S-transferase, and nitroreductase, but had positive correlations with the malondialdehyde content and plasma membrane permeability. This work provides valuable data toward elucidating the physiology and biochemistry of PCBs induced phytotoxicity.Flavonoid glycosides are important plant secondary metabolites with broad pharmacological activities. Flavonoid glycosides are generated from aglycones, in reactions catalyzed by typical uridine diphosphate-dependent glycosyltransferases (UGTs). Liverworts produce various types of flavonoid glycosides; however, only two UGTs have been characterized from liverworts to date. Here, we isolated three genes encoding UGTs (MeUGT1, MeUGT2, and MpalUGT1) from the liverwort species Marchantia emarginata and Marchantia paleacea through transcriptome sequencing. Recombinant MeUGT1, MeUGT2, and MpalUGT1 proteins heterologously produced in Escherichia coli exhibited catalytic activity towards multiple flavonoids. MeUGT1 and MpalUGT1 catalyzed the glycosylation of flavonols into the corresponding 3-O-glucosides with UDP-glucose as the sugar donor, while MeUGT2 exhibited a wider substrate specificity that included flavonols, flavones, and flavanones. When MeUGT2 was expressed in E. coli, the yield of flavonol 3-O-glucosides reached to 40-60% with feeding of the substrates kaempferol or quercetin under optimal conditions. Furthermore, heterologous expression of MeUGT1 in Arabidopsis thaliana increased the flavonol glycoside contents in the plants. Therefore, the UGTs characterized in this study could provide new data that will be useful for examining flavonoid biosynthesis in liverworts.Melatonin (N-acetyl-5-methoxytryptamine) plays important roles in the regulation of development and the response to biotic and abiotic stresses in plants. Serotonin-N-acetyltransferase (SNAT) functions as a key catalytic enzyme involved in melatonin biosynthesis. In this study, the candidate gene VvSNAT1 (SNAT isogene) was isolated from grape (Vitis vinifera L. cv. Merlot). Tissue-specific expression and external treatment revealed that VvSNAT1 is a salt-inducible gene that is highly expressed in leaves. Subcellular localisation results revealed that VvSNAT1 was located in the chloroplasts, which is similar to other plant SNAT proteins. Ectopic overexpression of VvSNAT1 in Arabidopsis resulted in increased melatonin production and salt tolerance. Transgenic Arabidopsis overexpressing VvSNAT1 exhibited enhanced growth and physiological performance, including a lower degree of leaf wilting, higher germination rate, higher fresh weight, and longer root length under salt stress. Moreover, overexpression of VvSNAT1 in Arabidopsis protected cells from oxidative damage by reducing the accumulation of malondialdehyde (MDA) and hydrogen peroxide (H2O2). These results indicate that VvSNAT1 positively responds to salt stress. Our results provide a novel perspective for VvSNAT1 to improve salt tolerance, mediated by melatonin accumulation, plant growth promotion and oxidative damage reduction.Sinocalycanthus chinensis, a diploid (2n = 22) deciduous shrub, belongs to the Calycanthaceae family of magnoliids and is rich secondary metabolites, such as terpenoids. However, the regulation of terpenoid biosynthesis in S. chinensis is largely unknown. In this study, comparative transcriptome analyses were performed in the bark, branches, leaves, and flowers. KEGG enrichment analysis revealed that the terpenoid biosynthesis and cytochrome P450 pathways were significantly enriched in the four tissues. Twelve terpenoid backbone biosynthesis-related genes were identified, and eight terpene synthases (TPSs) were reassembled based on independent transcriptomes from the four tissues. Phylogenetic analysis of the TPSs showed high sequence similarity between S. chinensis and Arabidopsis, and these TPSs were classified into three subfamilies. Moreover, 39 phytohormone response-related genes, including 5 abscisic acid (ABA) receptors, 25 auxin response factors, 3 gibberellin (GA) response genes, 5 ethylene response genes, and 1 jasmonic acid (JA) response gene were analyzed. Most phytohormone pathway-related genes were upregulated in the flowers and downregulated in the leaves. The endogenous indole acetic acid (IAA) content was higher in the flowers than in the other comparisons. Our results provide an opportunity to reveal the regulation of terpenoid biosynthesis in S. chinensis.Aluminum oxide and zinc oxide nanoparticles (NPs) are two of the mostly produced engineered metal oxide NPs. Here, barley germination and root elongation as well as gene expressions of the selected aquaporins (HvTip1;1 and HvPip1;1) and transcription factors (HvERFs and HvNFX1) were investigated after exposure to Al2O3 and ZnO NPs for foreseeing the effect of NP exposure. ICP-MS analysis showed that the nanoparticles were taken up into root and leaves. Even the germination analysis and seedling establishment data indicate that the applied NPs do not have any observable inhibitory effects except on root length, the gene expression analysis revealed that these nanoparticle applications lead to a response at the molecular level. The gene expression profiling indicated that aquaporins and transcription factor genes were differentially regulated in leaves and roots in response to NPs treatments. The expressions of aquaporin genes were higher especially in leaves in compared to the control plants. Gradual decrease was obtained in roots by application of the increased levels of Al2O3 NPs. The effects of ZnO NPs on gene expression levels of barley TFs were dramatically more distinctive in comparison with that of Al2O3 NPs. The expression profiles of HvERFs and HvNFX1 transcription factors in response to the Al2O3 and ZnO NPs suggest that these selected TFs can play important roles in shaping abiotic stress tolerance in young barley roots and leaves. Outcomes of the study will allow us to predict complex stress response of barley in response to the nanoparticles.

Autoři článku: Stewartrivers0347 (Strange Travis)