Hartestes4524
Over the last decade, a multitude of synthesis strategies has been reported for the production of high-quality nanoparticles. Wet-chemical methods are generally the most efficient synthesis procedures since high control of crystallinity and physicochemical properties can be achieved. However, a number of challenges remain from inadequate reaction control during the nanocrystallization process; specifically variability, selectivity, scalability and safety. These shortcomings complicate the synthesis, make it difficult to obtain a uniform product with desired properties, and present serious limitations for scaling the production of colloidal nanocrystals from academic studies to industrial applications. Continuous flow reactors based on microfluidic principles offer potential solutions and advantages. The reproducibility of reaction conditions in microfluidics and therefore product quality have proved to exceed those obtained by batch processing. Considering that in nanoparticles' production not only is it crucial to control the particle size distribution, but also the shape and chemical composition, this review presents an overview of the current state-of-the-art in synthesis of anisotropic and faceted nanostructures by using microfluidics techniques. The review surveys the available tools that enable shape and chemical control, including secondary growth methods, active segmented flow, and photoinduced shape conversion. In addition, emphasis is placed on the available approaches developed to tune the structure and chemical composition of nanomaterials in order to produce complex heterostructures in a continuous and reproducible fashion.Oligo-(p-Phenyleneethynylenes) (OPEs) have garnered widespread interest over the past three decades due to their excellent opto-electronic properties. However, the chief focus has been on the use of mainly small molecules or polymeric systems for the study of their structural diversity in opto-electronic applications. Recently, researchers have started delving deeper into their utility in material applications. Purely organic materials such as supramolecular polymers, self-assembled nanostructures, nanostructured organogels and single-crystalline materials derived from OPEs have already been developed and researched. Chirality has also been introduced into these systems. Additionally, these have shown physical properties such as polymorphism, liquid crystallinity, melt formation, mechanochromism, etc. All these materials have also shown excellent luminescence properties with high quantum yield and some have even shown energy harvesting properties. There have also been sporadic reports on OPE linker based hybrid systems such as metallogels and metal-organic framework (MOF) structures where structural analysis reveals the origin of tunable emission in these materials. Furthermore, by innovative structural design, unexplored properties of OPEs such as water repellency, bioimaging, drug delivery, photocatalysis, energy transfer, nanomorphology control, photoconductivity, and colour tunability could be achieved. This feature article will, therefore, encompass a detailed discussion on the development of this field as well as the analysis of the properties realized in OPE derived self-assembled supramolecular materials. The main focus will be on the following classes of materials soft supramolecular materials, crystalline supramolecular π-systems, nanoscale metal-organic frameworks (NMOFs) and bulk metal-organic frameworks (MOFs) and how their application horizon has been expanded by integrating OPEs into their structures.Hydroxido-bridged CuII6M double-cubane clusters (M = MnII, CoII) supported by D-penicillaminedisulfide were unexpectedly formed by treating a D-penicillaminato CuII2PtII2 complex with MBr2 in water. The clusters displayed heterogeneous electrocatalytic activities for water oxidation dependent on the central M shared by two CuII cubane units.In vitro models of human organs must accurately reconstitute oxygen concentrations and gradients that are observed in vivo to mimic gene expression, metabolism, and host-microbiome interactions. Here we describe a simple strategy to achieve physiologically relevant oxygen tension in a two-channel human small intestine-on-a-chip (Intestine Chip) lined with primary human duodenal epithelium and intestinal microvascular endothelium in parallel channels separated by a porous membrane while both channels are perfused with oxygenated medium. This strategy was developed using computer simulations that predicted lowering the oxygen permeability of poly-dimethylsiloxane (PDMS) chips in specified locations using a gas impermeable film will allow the cells to naturally decrease the oxygen concentration through aerobic respiration and reach steady-state oxygen levels less then 36 mm Hg ( less then 5%) within the epithelial lumen. The approach was experimentally confirmed using chips with embedded oxygen sensors that maintained this stable oxygen gradient. Furthermore, Intestine Chips cultured with this approach supported formation of a villus epithelium interfaced with a continuous endothelium and maintained intestinal barrier integrity for 72 h. This strategy recapitulates in vivo functionality in an efficient, inexpensive, and scalable format that improves the robustness and translatability of Organ Chip technology for studies on microbiome as well as oxygen sensitivity.A route for the preparation of merged symmetrical tetrahydroisoquinolines with central chirality through a rhodium-catalyzed intramolecular [2 + 2 + 2] cycloaddition involving enantiopure triynes as substrates is described. The results show that linear triynes lacking a 3-atom tether can undergo efficient cyclisation. The N-tethered 1,7,13-triynes used in our approach were easily prepared from readily accessible chiral homopropargyl amides, the basic building blocks in our approach, which were efficiently obtained by diastereoselective addition of propargyl magnesium bromide to Ellman imines. Additional substitution at the benzene rings could be attained when substituted triynes at the terminal triple bonds were employed, giving access to more complex tetrahydroisoquinolines after the rhodium-catalyzed intramolecular [2 + 2 + 2] cycloaddition. Among the different transition-metal catalysts, the Wilkinson complex (RhCl(PPh3)3) afforded higher yields in the cyclisation of linear triynes; however, triynes bearing a Br substituent at the terminal positions underwent the cyclisation more efficiently in the presence of [RhCl(CO)2]2.Chiral rhodium(III)-azobenzene complexes that are able to intercalate into DNA were developed. Upon light exposure, the azobenzene moiety of the metal complexes can photoisomerize from the trans-form to the cis-form, and strongly stabilize the DNA double-helix and modulate DNA transcription. This study presents the first example of metal-based photoswitchable DNA molecular locks.We designed and synthesized multifunctional group substituted naphthalimide (MFGNI) dyes by introducing glycine ethyl ester and azetidine on 1,8-naphthalimide. With different azetidine substituents, the emission of the MFGNI dyes was shifted from blue to green. These MFGNI dyes exhibited high photoluminescence quantum yields (61% to 85%) and large Stokes shifts (67 nm). The amides and hydroxyl groups improved the photostability of the MFGNI dyes. Due to the small molecular weight and lipophilic properties, these MFGNI dyes specifically stained lipid droplets in living cells.Lentiviruses are commonly used to deliver genetic code into host cells for biomedical applications, such as gene therapy, pharmaceuticals, and vaccine development. Knowing the infectious titer of these virus particles is critical for development in these areas. Current methods of determining viral titer often require cell culture, where a cell is infected and the inserted genetic code is expressed in a known number of cells, which can require days or weeks to prepare and analyze samples. To provide a more rapid method of determining viral titer, the use of surface enhanced Raman spectroscopy (SERS) was explored. VX-561 concentration SERS provides both chemical and structural information by using plasmonic metallic nanostructures to amplify the Raman signal. Two different lentiviruses, one with a vector encoding a GFP gene and the same virus without the GFP gene included, were analyzed by SERS in viral production media at various concentrations. The SERS response was demonstrated to be sensitive to the incorporation of the GFP gene into the viral vector. Chemometric analysis using multivariate curve resolution (MCR) was able to identify a component in the observed SERS spectra that correlated with the concentration of GFP containing virus particles. Using the MCR model and the SERS response, the viral titer of lentivirus encoding for GFP was determined. The viral titer determined by SERS agreed well with expression of the GFP in infected cells. The SERS response using different metals and excitation wavelengths was also explored. Overall, this work demonstrates the utility of SERS for rapid determination of lentiviral titer.Ferrocene and its derivatives have been extensively used as an internal reference in electrochemical processes. Yet, they possess limitations such as solvent restrictions that require chemical modifications. In this regard, we have studied the use of metallacarboranes [3,3'-M(1,2-C2B9H11)2]- (M = Co, Fe) as general internal reference systems and have proven their suitability by thoroughly investigating their electrochemical properties in both aqueous and organic electrolytes without any derivatization.In this work, a flexible amphiprotic amino-bonded carbon nanotube-Ag nanoparticle/polystyrene (CNT-NH2-Ag/PS) paper electrode was fabricated to measure glucose in human body fluids by a combination of vacuum filtration and high temperature baking. The front side of the fabricated paper electrode was hydrophobic and conductive, whereas its back side was hydrophilic and nonconductive. In the fabrication process, the coating sequence of CNT-NH2, Ag and PS was critical to determine the performance of the resulting CNT-NH2-Ag/PS electrode besides other parameters (e.g., amount of soluble starch, PS and Ag nanoparticles, type and amount of CNT-NH2, and electrode sensing area). Based on a series of experimental observations, the possible mechanism of glucose detection on the paper electrode was proposed, in which glucose was more favorable to migrate to the hydrophilic back side of the paper and interact with the active species (e.g., O2-) on the electrode surface. The electrochemical results showed that the CNT-NH2-Ag/PS paper electrode maintained stable electrochemical properties even after five cycles of use and 60 days of storage in air. The amphiprotic paper electrode demonstrated excellent sensing performance for glucose with a linear range of 1 μM to 1000 μM, a low detection limit of 0.2 μM, and a sensitivity of 31 333.0 μA mM-1 cm-2. The fabricated paper electrode was also successfully applied to detect different levels of glucose in complex human body fluids such as saliva, urine, and serum. These features make this type of paper electrode promising for glucose measurement.