Hublanchard5109
minimal risk of local recurrence.
To study the trade-offs of three online strategies to adapt treatment plans of patients with locally advanced pancreatic carcinoma (LAPC) treated using the CyberKnife with tumor tracking.
A total of 35 planning computed tomography scans and 98 daily in-room computed tomography scans were collected from 35 patients with LAPC. Planned dose distributions, optimized with VOLO, were evaluated on manually contoured daily anatomies to collect daily doses. Three strategies were tested to adapt treatment plans (1) unrestricted full replanning using a patient-specific plan template, (2) time-restricted replanning on organs at risk (OARs) within 3cm from the planning target volume (PTV) structure, and (3) dose realignment optimization to stay within OAR constraints. Dose distributions resulting from each plan adaptation strategy were dosimetrically compared by means of gross tumor volume (GTV), PTV coverage, and OAR tolerances.
Planned doses did not result in dose-constraint violations for 28 of 98 daily anatomieso address the specific anatomic challenges on the treatment day. The increase in the complexity of the strategy corresponds with an increasing number of successfully adapted plans.
Unrestricted replanning was the most time-consuming method but reached the highest number of successfully adapted plans. Time-restricted replanning and dose realignment resulted in a high number of plans within dose constraints. Depending on the resources available, an adaptive strategy can be selected for each patient to address the specific anatomic challenges on the treatment day. The increase in the complexity of the strategy corresponds with an increasing number of successfully adapted plans.Previous research has linked neural correlates with motivational traits and measures of impulsivity. However, few previous studies have investigated whether individual differences in motivation and impulsivity moderate the relationship between these disparate neural activity patterns. In a sample of 118 young adults, we used Electroencephalography (EEG) to examine whether behavioral activation and inhibition systems (BIS/BAS) and impulsivity facets (negative urgency, lack of perseverance), moderate the relationship between beta power and resting frontal alpha asymmetry. Regression analyses revealed a novel relationship between lesser beta power and greater left frontal alpha asymmetry (LFA). Moderation analyses suggest this relationship may strengthen as BIS/BAS levels increase, and trait impulsivity levels decrease from the mean. These results are among the first revealing a relationship between two widely investigated neural activity patterns of motivation and provide some indication individual differences moderate this relationship. The limitations of these findings and need for future research are discussed.Our previous studies found that M10, a myricetin-3-O-β-d-lactose sodium salt, possessed higher effects of ameliorating ulcerative colitis (UC) than Myricetin in mice. Here, we aim to investigate whether the inhibition of UC is the consequence of the effects of M10 that leads to the changed microbiota. Mice model of UC was induced by dextran sulfate sodium (DSS) treatment. Inavolisib PI3K inhibitor M10 and Myricetin were orally administrated for 12 weeks. We performed 16S rDNA sequencing assay to analyze the composition of gut microbiota isolated from ileocecum. Both M10 and Myricetin normalized the composition of Firmicutes and Actinobacteria as healthy mice had. At genus level, the effects of M10 and Myricetin on colitis were associated to the increase of probiotics, such as Akkermansia, and the inhibition of pathogenic microorganisms, such as Ruminococcus and Parabacteroides. M10 had stronger activity than Myricetin in the improvement of biosynthesis and degradation activities, resulting to increasing metabolism of sulfur, pyruvate, steroid biosynthesis and unsaturated fatty acid biosynthesis in gut. Furthermore, M10 normalized the proportion of Firmicutes and Actinobacteria in gut microbiota. It suggests that the improvements in UC are the consequence of the effect of M10 that leads to the changed intestinal microbiota. Conclusion M10 contributed the pharmacological effects on UC by modification of the intestinal microbiota.The objective of this study was to examine the therapeutic effect of ruxolitinib, an orally administered selective Janus kinase (JAK) 1/2 inhibitor, on chronic graft-versus-host disease (cGVHD) using a murine model of sclerodermatous GVHD (scl-GVHD). Compared with scl-GVHD controls, ruxolitinib-treated recipients had scl-GVHD of significantly attenuated clinical and pathological severity in the skin and decreased frequencies of effector cells, CD4+ T cells, and CD11b+ macrophage/monocytes. Regulatory CD4+ Foxp3+ T cells were expanded whereas interferon-γ (IFN-γ)-producing CD4+ T cells were significantly decreased in ruxolitinib-treated recipients. Ruxolitinib suppressed not only the production of IFN-γ from CD4+ T cells and monocyte chemoattractant protein 1 (MCP-1) from CD11b+ macrophage/monocytes, but also the proliferation of these cells in vitro. Levels of both cytokines (IFN-γ and MCP-1) were also reduced in the spleen and skin of ruxolitinib-treated recipients in vivo. IFN-γ-induced MCP-1 production and migration of RAW 264.7 cells, a macrophage cell line, were inhibited by ruxolitinib. However, supplementation with MCP-1 restored this effect of ruxolitinib. In addition, blocking JAK-STAT signaling using ruxolitinib reduced the activation of STAT1 in stimulated immune effector cells. Taken together, these results suggest that ruxolitinib can prevent scl-GVHD by suppressing IFN-γ produced by T cells and MCP-1 expression in macrophage/monocytes via inhibition of JAK-STAT signaling.Extensive phytochemical investigation on the whole herbs of Euphorbia hypericifolia led to the isolation of 18 structurally diverse tetracyclic and pentacyclic triterpenoids, including four 4α,14α-dimethyl-5α-ergostanes (1-4), two seco-adiananes (5 and 6), three dammaranes (7-9), four cycloartanes (10-13), one tirucallane (14), two fernanes (15 and 16), one ursane (17), and one oleanane (18). Among them, euphypenoids A (1) and B (5) were new triterpenoids. Their structures were elucidated on the basis of extensive spectroscopic analysis, single-crystal X-ray diffraction, and chemical transformation. All isolates were screened for their cytotoxic activities against the colorectal cancer cell line HCT-116, and compounds 1, 12, and 15 showed remarkable activities with IC50 values of 12.8 ± 1.6, 7.4 ± 0.2, and 10.6 ± 1.2 μM, respectively.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the current coronavirus disease 2019 (COVID-19). The main organ affected in this infection is the lung and the virus uses the angiotensin-converting enzyme 2 (ACE2) as a receptor to enter the target cells. link2 In this context, a controversy raised regarding the use of renin-angiotensin system (RAAS) blockers, as these drugs might increase ACE2 expression in some tissues and potentially increase the risk for SARS-CoV-2 infection. This is specially concerning in diabetic patients as diabetes is a risk factor for COVID-19.
12-week old diabetic mice (db/db) were treated with ramipril, or vehicle control for 8 weeks. Non-diabetic db/m mice were included as controls. ACE2 expression and activity were studied in lung, kidney and heart of these animals.
Kidney ACE2 activity was increased in the db/db mice as compared to the db/m (143.2%±23% vs 100%±22.3%, p=0.004), whereas ramipril had no significant effect. In the lung, no differences were found in ACE2 when comparing db/db mice to db/m and ramipril also had no significant effect. In the heart, diabetes decreased ACE2 activity (83%±16.8%, vs 100%±23.1% p=0.02), and ramipril increased ACE2 significantly (83%±16.8% vs 98.2%±15%, p=0.04).
In a mouse model of type 2 diabetes, ramipril had no significant effect on ACE2 activity in either kidneys or in the lungs. Therefore, it is unlikely that RAAS blockers or at least angiotensin-converting enzyme inhibitors increase the risk of SARS-CoV-2 infection through increasing ACE2.
In a mouse model of type 2 diabetes, ramipril had no significant effect on ACE2 activity in either kidneys or in the lungs. Therefore, it is unlikely that RAAS blockers or at least angiotensin-converting enzyme inhibitors increase the risk of SARS-CoV-2 infection through increasing ACE2.Over the past four decades, the global prevalence of obesity has increased rapidly in all age ranges. Emerging evidence suggests that paternal lifestyle and environmental exposure have a crucial role in the health of offspring. link3 Therefore, the current study investigated the impact of paternal obesity on the metabolic profile of offspring in a male mouse model of obesity. Female offspring of obese fathers fed a high-fat diet (HFD) (60% kcal fat) showed hyperglycemia because of enhanced gluconeogenesis and elevated expression of phosphoenolpyruvate carboxykinase (PEPCK), which is a key enzyme involved in the regulation of gluconeogenesis. Methylation of the Igf2/H19 imprinting control region (ICR) was dysregulated in the liver of offspring, and the sperm, of HFD fathers, suggesting that epigenetic changes in germ cells contribute to this father-offspring transmission. In addition, we explored whether H19 might regulate hepatic gluconeogenesis. Our results showed that overexpression of H19 in Hepa1-6 cells enhanced the expression of PEPCK and gluconeogenesis by promoting nuclear retention of forkhead box O1 (FOXO1), which is involved in the transcriptional regulation of Pepck. Thus, the current study suggests that paternal exposure to HFD impairs the gluconeogenesis of offspring via altered Igf2/H19 DNA methylation.This study investigates the ability of various shell-forming excipients to preserve the dispersibility of dry powder dosage forms, e.g., nasally administered vaccines, upon exposure to a high-humidity environment. Trehalose combinations using leucine, pullulan, or trileucine were selected as the candidate excipient systems, and the powder dispersibility of these systems was compared with that of pure trehalose particles. Scaled-up monodisperse spray drying was used to produce sufficient quantities of uniform-sized particles for powder dispersibility analysis. Particle size, crystallinity, and morphology of the powders before and after exposure to moisture were characterized by an aerodynamic particle sizer, Raman spectroscopy, and scanning electron microscopy, respectively. Three two-component particle systems composed of trehalose/trileucine (97/3 w/w), trehalose/pullulan (70/30 w/w), and trehalose/leucine (70/30 w/w) were first formulated and their dispersibility, characterized as the emitted dose from dry powder inhalers, was then compared with that of trehalose particles. The formulation containing 30% leucine maintained the highest emitted dose (90.3 ± 10%) at a 60 L/min flow rate after 60 min exposure to 90% RH and 25 °C, showing its superior protection against exposure to humidity compared with the other systems. Further investigations under more challenging conditions at a 15 L/min flow rate on the trehalose/leucine system with various compositions (70/30, 80/20, 90/10 w/w) showed that a higher leucine concentration generally provided better protection against moisture and maintained higher powder dispersibility, probably due to higher surface coverage of crystalline leucine and a thicker leucine shell around the particle. The study concludes that leucine may be considered an appropriate shell-forming excipient in the development of dry powder formulations in order to protect the dosage forms against humidity during administration.