Jonassonstrickland1648

Z Iurium Wiki

Verze z 14. 8. 2024, 01:51, kterou vytvořil Jonassonstrickland1648 (diskuse | příspěvky) (Založena nová stránka s textem „Triple-negative breast cancer (TNBC) is a lethal malignancy without safe and effective therapeutic drugs. In this study, the anti-TNBC bioassay-guided isol…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Triple-negative breast cancer (TNBC) is a lethal malignancy without safe and effective therapeutic drugs. In this study, the anti-TNBC bioassay-guided isolation of the medicinal plant Croton kongensis followed by the structural modification led to the construction of a small ent-kaurane diterpenoid library (1-25). With subsequent biological screening, 20 highly potent compounds (IC50s less then 3 μM) were identified. Among them, 8,9-seco-ent-kaurane 6 displayed comparable activity (IC50s ∼ 80 nM) to doxorubicin but with better selectivity. The analysis of structure-activity relationships suggested that the cleavage of the C8-C9 bond and the presence of α,β-unsaturated ketone moiety were essential for the activity. The mechanistic study revealed that 6 induced apoptosis, autophagy, and metastasis suppression in TNBC cells via inhibition of Akt. In vivo, 6 significantly suppressed the TNBC tumor growth without causing side effects. All these results suggested that 6 may serve as a promising lead for the development of novel anti-TNBC agents in the future.The terminal cadmium hydride compound, [κ3-TismPriBenz]CdH, which features the tris[(1-isopropylbenzimidazol-2-yl)dimethylsilyl]methyl ligand, may be obtained via the reactions of either [κ3-TismPriBenz]CdN(SiMe3)2 or [TismPriBenz]CdOSiPh3 with PhSiH3. The Cd-H bond of [κ3-TismPriBenz]CdH undergoes (a) metathesis reactions with MeI, Me3SiX (X = Cl, Br, I, NCO), and Me3SnX (X = Cl, Br, I) to afford the corresponding [TismPriBenz]CdX derivative, (b) insertion with CO2 and CS2 to afford respectively [TismPriBenz]Cd(κ1-O2CH) and [TismPriBenz]Cd(κ1-S2CH), and (c) hydride abstraction with B(C6F5)3 to afford [TismPriBenz]Cd[HB(C6F5)3] that possesses a rare trigonal monopyramidal geometry for cadmium.As halogen bonding is a weak, transient interaction, its description in solution is challenging. We demonstrate that scalar coupling constants (J) are modulated by halogen bonding. The binding-induced magnitude change of one-bond couplings, even up to five bonds from the interaction site, correlates to the interaction strength. We demonstrate this using the NMR data of 42 halogen-bonded complexes in dichloromethane solution and by quantum chemical calculations. Our observation puts scalar couplings into the toolbox of methods for characterization of halogen bond complexes in solution and paves the way for their applicability for other types of weak σ-hole interactions.The aim of this study was to evaluate the effects of resistant starch (RS) and fat levels on the gut microbiome in C57BL/6 mice. Three levels of RS from three varieties of rice were the major source of carbohydrates and fat levels were low (10%) and high (39%). We confirmed that RS decreased the Firmicutes to Bacteroidetes ratio, increased SCFA production by higher Bacteroidaceae and S24-7 abundance, and enriched predicted gene families of glycosidases and functional pathways associated with carbohydrate and glycan metabolism. We also found correlations between microbial taxa and tissue gene expression related to carbohydrate and lipid metabolism. Moreover, increasing RS levels resulted in a molecular ecological network with enhanced modularity and interspecific synergy, which is less sensitive to high fat intervention. Overall, RS as low as 0.44% from cooked rice can modulate gut microbiome in mice, which correlated to a protective effect against deleterious effects of an obesogenic diet.Alkynylcyclopropanes have found promising applications in both organic synthesis and medicinal chemistry but remain rather underexplored due to the challenges associated with their preparation. We describe a convenient two-step methodology for the alkynylcyclopropanation of alkenes, based on the rhodium(II)-catalyzed decarbenation of 7-alkynyl cycloheptatrienes. The catalytic system employed circumvents a fundamental problem associated with these substrates, which usually evolve via 6-endo-dig cyclization or ring-contraction pathways under metal catalysis. This unique performance unlocks a rapid access to a diverse library of alkynylcyclopropanes (including derivatives of complex drug-like molecules), versatile intermediates that previously required much lengthier synthetic approaches. Combining experiments and DFT calculations, the complete mechanistic picture for the divergent reactivity of alkynylcycloheptatrienes under metal catalysis has been unveiled, rationalizing the unique selectivity displayed by rhodium(II) complexes.Nitrous acid (HONO) is a toxic household pollutant and a major source of indoor OH radicals. The high surface-to-volume ratio and diverse lighting conditions make the indoor photochemistry of HONO complex. This study demonstrates surface uptake of NO2 and gaseous HNO3 followed by gas-phase HONO generation on gypsum surfaces, model system for drywall, under reaction conditions appropriate for an indoor air environment. Tens of parts per billion of steady-state HONO are detected under these experimental conditions. Mechanistic insight into this heterogeneous photochemistry is obtained by exploring the roles of material compositions, relative humidities, and light sources. NO2 and HNO3 are adsorbed onto drywall surfaces, which can generate HONO under illumination and under dark conditions. Photoenhanced HONO generation is observed for illumination with a solar simulator as well as with the common indoor light sources such as compact fluorescence light and incandescent light bulbs. Incandescent light sources release more HONO and NO2 near the light source compared to the solar radiation. Overall, HONO production on the gypsum surface increases with the increase of RH up to 70% relative humidity; above that, the gaseous HONO level decreases due to surface loss. Heterogeneous hydrolysis of NO2 is predicted to be the dominant HONO generation channel, where NO2 is produced through the photolysis of surface-adsorbed nitrates. selleck chemicals This hydrolysis reaction predominantly occurs in the first layer of surface-adsorbed water.We report the design and characterization of liquid crystal (LC)-infused porous polymer membranes that can detect and report on the presence of natural and synthetic amphiphiles in aqueous solution. We demonstrate that thermotropic LCs can be infused into nanoporous polymer membranes to yield LC-infused surfaces that exhibit slippery behaviors in contact with a range of aqueous fluids. In contrast to conventional liquid-infused surfaces (LIS) or slippery liquid-infused porous surfaces (SLIPS) prepared using isotropic oils, aqueous solutions slide over the surfaces of these LC-infused materials at speeds that depend strongly upon the composition of the fluid, including the presence, concentration, or structure of a dissolved surfactant. In general, the sliding times of aqueous droplets on these LC-infused surfaces increase significantly (e.g., from times on the order of seconds to times on the order of minutes) with increasing amphiphile concentration, allowing sliding times to be used to estimate the concentrdroplets on surfaces could open the door to new applications for antifouling, liquid-infused materials in the context of environmental sensing and other fundamental and applied areas.Updating a calibration model formed in original (primary) sample and spectral measurement conditions to predict analyte values in novel (secondary) conditions is an essential activity in analytical chemistry in order to avoid a complete recalibration. Established model updating methods require sample analyte reference values for a small set of secondary domain samples (labeled data) to be used in updating processes. Because obtaining reference values is time consuming and is the costly part of any calibration, methods are needed that do not require labeled secondary samples, thereby allowing on demand model updating. This paper compares model updating methods with and without labeled secondary samples. A hybrid model updating approach is also developed and evaluated. Unfortunately, a major impediment to adapting a model without secondary analyte reference values has been model selection. Because multiple tuning parameters are commonly involved in model updating methods, thousands of models are formed, making model selection complex. A recently developed framework is evaluated for automatic model selection of several two to three tuning parameter-based model updating methods without secondary analyte reference values (labels). The model selection method is based on model diversity and prediction similarity (MDPS) of the unlabeled samples to be predicted. The new secondary samples to be predicted can be used to form the updated models and again to select the final predicting models. Because models are formed and selected on demand to directly predict target samples, complicated cross-validation processes are not needed. Four near-infrared data sets covering 40 model updating situations are evaluated showing that MDPS can select reliable updated models outperforming or rivaling prediction errors from total recalibrations with secondary reference values.Quantitative scanning micropipette contact method measurements are subject to the deleterious effects of reference electrode interference. The commonly used Ag/AgCl wire quasi-reference counter electrode in the miniaturized electrochemical cell of the scanning micropipette contact method was found to leak Ag+ into the electrolyte solution. The reduction of these Ag+ species at the working electrode surface generates a faradaic current, which significantly affects the low magnitude currents inherently measured in the scanning micropipette contact method. We demonstrate that, during the microscopic corrosion investigation of the AA7075-T73 alloy using the oil-immersed scanning micropipette contact method, the cathodic current was increased by the Ag+ reduction, resulting in positive shifts of corrosion potentials. The use of a leak-free Ag/AgCl electrode or an extended distance between the Ag/AgCl wire and micropipette tip droplet eliminated the Ag+ contamination, making it possible to measure accurate corrosion potentials during the oil-immersed scanning micropipette contact method measurements.Polymeric chains made of "giant" monomers at a larger length scale provide intriguing insights into the fundamental principles of polymer science. In this study, we modularly prepared a library of discrete amphiphilic polymeric chains using molecular nanoparticles as repeat units, with exact control of composition, chain length, surface property, and regio-configuration. These giant polymeric chains self-assembled into a rich collection of highly ordered phases. The precise chemical structure and uniform chain length eliminate all the inherent molecular "defects", while the nanosized monomer amplifies minute structural differences, providing an ideal platform for a systematic scrutiny of the self-assembly behaviors at a larger length scale. The compositional and regio-configurational contribution was carefully studied. The regio-regularity is found to have a direct and profound impact on the chain conformation, leading to a distinct molecular packing scheme and therefore shifting the phase boundaries. With increasing the length of the linker, the regio-constraint gradually diminishes, and the neighboring particles would eventually be decoupled.

Autoři článku: Jonassonstrickland1648 (Damborg Walters)