Gilesmarshall5749

Z Iurium Wiki

Verze z 13. 8. 2024, 23:57, kterou vytvořil Gilesmarshall5749 (diskuse | příspěvky) (Založena nová stránka s textem „We find that both measures exhibit different types of biases, which have profound impacts on the resulting network structures. By combining the complementa…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

We find that both measures exhibit different types of biases, which have profound impacts on the resulting network structures. By combining the complementary information captured by ES and ECA, we revisit the spatiotemporal organization of extreme events during the South American Monsoon season. While the corrected version of ES captures multiple time scales of heavy rainfall cascades at once, ECA allows disentangling those scales and thereby tracing the spatiotemporal propagation more explicitly.Power systems are subject to fundamental changes due to the increasing infeed of decentralized renewable energy sources and storage. The decentralized nature of the new actors in the system requires new concepts for structuring the power grid and achieving a wide range of control tasks ranging from seconds to days. Here, we introduce a multiplex dynamical network model covering all control timescales. Crucially, we combine a decentralized, self-organized low-level control and a smart grid layer of devices that can aggregate information from remote sources. The safety-critical task of frequency control is performed by the former and the economic objective of demand matching dispatch by the latter. Having both aspects present in the same model allows us to study the interaction between the layers. Remarkably, we find that adding communication in the form of aggregation does not improve the performance in the cases considered. Instead, the self-organized state of the system already contains the information required to learn the demand structure in the entire grid. The model introduced here is highly flexible and can accommodate a wide range of scenarios relevant to future power grids. We expect that it is especially useful in the context of low-energy microgrids with distributed generation.We consider a class of multiplicative processes which, added with stochastic reset events, give origin to stationary distributions with power-law tails-ubiquitous in the statistics of social, economic, and ecological systems. Our main goal is to provide a series of exact results on the dynamics and asymptotic behavior of increasingly complex versions of a basic multiplicative process with resets, including discrete and continuous-time variants and several degrees of randomness in the parameters that control the process. In particular, we show how the power-law distributions are built up as time elapses, how their moments behave with time, and how their stationary profiles become quantitatively determined by those parameters. Our discussion emphasizes the connection with financial systems, but these stochastic processes are also expected to be fruitful in modeling a wide variety of social and biological phenomena.We study the statistics and short-time dynamics of the classical and the quantum Fermi-Pasta-Ulam chain in the thermal equilibrium. We analyze the distributions of single-particle configurations by integrating out the rest of the system. At low temperatures, we observe a systematic increase in the mobility of the chain when transitioning from classical to quantum mechanics due to zero-point energy effects. We analyze the consequences of quantum dispersion on the dynamics at short times of configurational correlation functions.Inverse stochastic resonance comprises a nonlinear response of an oscillatory system to noise where the frequency of noise-perturbed oscillations becomes minimal at an intermediate noise level. We demonstrate two generic scenarios for inverse stochastic resonance by considering a paradigmatic model of two adaptively coupled stochastic active rotators whose local dynamics is close to a bifurcation threshold. In the first scenario, shown for the two rotators in the excitable regime, inverse stochastic resonance emerges due to a biased switching between the oscillatory and the quasi-stationary metastable states derived from the attractors of the noiseless system. In the second scenario, illustrated for the rotators in the oscillatory regime, inverse stochastic resonance arises due to a trapping effect associated with a noise-enhanced stability of an unstable fixed point. The details of the mechanisms behind the resonant effect are explained in terms of slow-fast analysis of the corresponding noiseless systems.We present the use of modern machine learning approaches to suppress self-sustained collective oscillations typically signaled by ensembles of degenerative neurons in the brain. The proposed hybrid model relies on two major components an environment of oscillators and a policy-based reinforcement learning block. We report a model-agnostic synchrony control based on proximal policy optimization and two artificial neural networks in an Actor-Critic configuration. A class of physically meaningful reward functions enabling the suppression of collective oscillatory mode is proposed. The synchrony suppression is demonstrated for two models of neuronal populations-for the ensembles of globally coupled limit-cycle Bonhoeffer-van der Pol oscillators and for the bursting Hindmarsh-Rose neurons using rectangular and charge-balanced stimuli.In this paper, we introduce an interesting new megastable oscillator with infinite coexisting hidden and self-excited attractors (generated by stable fixed points and unstable ones), which are fixed points and limit cycles stable states. Additionally, by adding a temporally periodic forcing term, we design a new two-dimensional non-autonomous chaotic system with an infinite number of coexisting strange attractors, limit cycles, and torus. The computation of the Hamiltonian energy shows that it depends on all variables of the megastable system and, therefore, enough energy is critical to keep continuous oscillating behaviors. PSpice based simulations are conducted and henceforth validate the mathematical model.The logistic map, whose iterations lead to period doubling and chaos as the control parameter, is increased and has three cases of the control parameter where exact solutions are known. In this paper, we show that general solutions also exist for other values of the control parameter. selleck kinase inhibitor These solutions employ a special function, not expressible in terms of known analytical functions. A method of calculating this function numerically is proposed, and some graphs of this function are given, and its properties are discussed.Intrinsic predictability is imperative to quantify inherent information contained in a time series and assists in evaluating the performance of different forecasting methods to get the best possible prediction. Model forecasting performance is the measure of the probability of success. Nevertheless, model performance or the model does not provide understanding for improvement in prediction. Intuitively, intrinsic predictability delivers the highest level of predictability for a time series and informative in unfolding whether the system is unpredictable or the chosen model is a poor choice. We introduce a novel measure, the Wavelet Entropy Energy Measure (WEEM), based on wavelet transformation and information entropy for quantification of intrinsic predictability of time series. To investigate the efficiency and reliability of the proposed measure, model forecast performance was evaluated via a wavelet networks approach. The proposed measure uses the wavelet energy distribution of a time series at different scales and compares it with the wavelet energy distribution of white noise to quantify a time series as deterministic or random. We test the WEEM using a wide variety of time series ranging from deterministic, non-stationary, and ones contaminated with white noise with different noise-signal ratios. Furthermore, a relationship is developed between the WEEM and Nash-Sutcliffe Efficiency, one of the widely known measures of forecast performance. The reliability of WEEM is demonstrated by exploring the relationship to logistic map and real-world data.Because the collapse of complex systems can have severe consequences, vulnerability is often seen as the core problem of complex systems. Multilayer networks are powerful tools to analyze complex systems, but complex networks may not be the best choice to mimic subsystems. In this work, a cellular graph (CG) model is proposed within the framework of multilayer networks to analyze the vulnerability of complex systems. Specifically, cellular automata are considered the vertices of a dynamic graph-based model at the microlevel, and their links are modeled by graph edges governed by a stochastic model at the macrolevel. A Markov chain is introduced to illustrate the evolution of the graph-based model and to obtain the details of the vulnerability evolution with low-cost inferences. This CG model is proven to describe complex systems precisely. The CG model is implemented with two actual organizational systems, which are used on behalf of the typical flat structure and the typical pyramid structure, respectively. The computational results show that the pyramid structure is initially more robust, while the flat structure eventually outperforms it when being exposed to multiple-rounds strike. Finally, the sensitivity analysis results verify and strengthen the reliability of the conclusions.Here, we describe a general-purpose prediction model. Our approach requires three matrices of equal size and uses two equations to determine the behavior against two possible outcomes. We use an example based on photon-pixel coupling data to show that in humans, this solution can indicate the predisposition to disease. An implementation of this model is made available in the supplementary material.We analyze fractional Sturm-Liouville problems with a new generalized fractional derivative in five different forms. We investigate the representation of solutions by means of ρ-Laplace transform for generalized fractional Sturm-Liouville initial value problems. Finally, we examine eigenfunctions and eigenvalues for generalized fractional Sturm-Liouville boundary value problems. All results obtained are compared with simulations in detail under different α fractional orders and real ρ values.Permutation Entropy (PE) is a cost effective tool for summarizing the complexity of a time series. It has been used in many applications including damage detection, disease forecasting, detection of dynamical changes, and financial volatility analysis. However, to successfully use PE, an accurate selection of two parameters is needed the permutation dimension n and embedding delay τ. These parameters are often suggested by experts based on a heuristic or by a trial and error approach. Both of these methods can be time-consuming and lead to inaccurate results. In this work, we investigate multiple schemes for automatically selecting these parameters with only the corresponding time series as the input. Specifically, we develop a frequency-domain approach based on the least median of squares and the Fourier spectrum, as well as extend two existing methods Permutation Auto-Mutual Information Function and Multi-scale Permutation Entropy (MPE) for determining τ. We then compare our methods as well as current methods in the literature for obtaining both τ and n against expert-suggested values in published works. We show that the success of any method in automatically generating the correct PE parameters depends on the category of the studied system. Specifically, for the delay parameter τ, we show that our frequency approach provides accurate suggestions for periodic systems, nonlinear difference equations, and electrocardiogram/electroencephalogram data, while the mutual information function computed using adaptive partitions provides the most accurate results for chaotic differential equations. For the permutation dimension n, both False Nearest Neighbors and MPE provide accurate values for n for most of the systems with a value of n=5 being suitable in most cases.

Autoři článku: Gilesmarshall5749 (Hatch Sanchez)