Lorentzenkirkland4625

Z Iurium Wiki

Verze z 13. 8. 2024, 16:23, kterou vytvořil Lorentzenkirkland4625 (diskuse | příspěvky) (Založena nová stránka s textem „A). After feeding jellyfish by silver pomfret, some amino acids, amines, and unsaturated fatty acids in the liver tissue showed a significant increase. Our…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

A). After feeding jellyfish by silver pomfret, some amino acids, amines, and unsaturated fatty acids in the liver tissue showed a significant increase. Our results, thus, not only reveal changes in physiological indices of silver pomfret after feeding on jellyfish but also provide a new idea for further optimizing the feed formula for silver pomfret culture.Palm oil production chain generates a greasy residue in the refining stage, the Palm Oil Deodorizer Distillate (PODD), mainly composed of free fatty acids. Palm oil is also used industrially to fry foods, generating a residual frying oil (RFO). In this paper, we aimed to produce lipase from palm agro-industrial wastes using an unconventional yeast. RFO_palm, from a known source, consisted of 0.11% MAG + FFA, 1.5% DAG, and 97.5 TAG, while RFO_commercial, from a commercial restaurant, contained 6.7% of DAG and 93.3% of TAG. All palm oil wastes were useful for extracellular lipase production, especially RFO_commercial that provided the highest activity (4.9 U/mL) and productivity (465 U/L.h) in 75 h of processing time. In 48 h of process, PODD presented 2.3 U/mL of lipase activity and 48.5 U/L.h of productivity. RFO_commercial also showed the highest values for lipase associated to cell debris (843 U/g). This naturally immobilized biocatalyst was tested on hydrolysis reactions to produce Lipolyzed Milk Fat and was quite efficient, with a hydrolysis yield of 13.1% and 3-cycle reuse. Therefore, oily palm residues seem a promising alternative to produce lipases by the non-pathogenic yeast Y. lipolytica and show great potential for industrial applications.Sensitive and effective phytoplasma DNA amplification in symptomatic rose cultivars is a long unresolved problem. In the present study, improvement in standardization for PCR assay for phytoplasma detection was established with rose samples by selection of various combinations of nested primer pairs of 16S ribosomal gene and secA gene. CTAB DNA extraction method was slightly modified by adding 2% polyvinyl pyrrolidone and increased the isopropanol volume which yielded better quality DNA. Best amplification results were achieved in nested PCR assay employing P1/P7, R16mF2/R16mR2 and R16F2n/R16R2, P1/P7 and R16mF2/R16mR2, and R16mF2/R16mR2 and fU5/rU3 primer pairs. Besides, a multiplex PCR assay was also developed and optimized for consistent identification of phytoplasma in rose samples by employing primer pairs of 16S rRNA and secA genes together in a single PCR reaction by optimizing annealing temperature at 55 °C.Leuconostoc citreum, a type of food-grade probiotic bacteria, plays an important role in food fermentation and intestinal probiotics. Biofilms help bacteria survive under adverse conditions, and LuxS/AI-2-dependent quorum sensing (QS) plays an important role in the regulation of their biofilm-forming activities. L. citreum 37 was a biofilm-forming strain isolated from dairy products. The aim of this study was to analyze genes involved in the LuxS/AI-2 system based on genome sequencing and biofilm formation of L. citreum 37. Genome assembly yielded two contigs (one chromosome and one plasmid), and the complete genome contained 1,946,279 base pairs (bps) with a G + C content of 38.91%. The genome sequence analysis showed that there were several pathways such as the two-component system, QS, and seven other signal pathways, and 26 genes (including luxS, pfs, and 24 other genes) may participate in QS related to biofilm formation. All these results showed that the LuxS/AI-2 system is complete in the genome of L. citreum 37. The quantitative polymerase chain reaction (qPCR) of pfs, luxS genes, and AI-2 production of L. citreum 37 in planktonic state and biofilm state showed that the expression of pfs and luxS genes was consistent with the production of AI-2 and was positively correlated with biofilm formation. learn more After luxS of L. citreum 37 expressed in Escherichia coli BL21, AI-2 production was detected, suggesting that the luxS gene played an important role in AI-2 synthesis, Therefore, luxS may regulate the biofilm formation of L. citreum 37 by participating in AI-2 synthesis. It is projected that results of this study could help facilitate further understanding and application of L. citreum 37.

The online version contains supplementary material available at 10.1007/s13205-021-02747-2.

The online version contains supplementary material available at 10.1007/s13205-021-02747-2.Augmenting shoot multiplication through genetic engineering is an emerging biotechnological application desirable in optimizing regeneration of genetically modified plants on selection medium and rapid clonal propagation of elite cultivars. Here, we report the improved shoot multiplication in transgenic banana lines with overexpression of MusaSNAC1, a drought-associated NAC transcription factor in banana. Overexpression of MusaSNAC1 induces hypersensitivity of transgenic banana lines toward 6-benzylaminopurine ensuing higher shoot number on different concentrations of 6-benzylaminopurine. Altered transcript levels of multiple genes involved in auxin signaling (Aux/IAA and ARFs) and cytokinin signaling pathways (ARRs) in banana plants overexpressing MusaSNAC1 corroborate the hypersensitivity of transgenic banana plants toward 6-benzylaminopurine. Modulation in expression of ARRs reported to be involved in ABA-hypersensitivity and closure of stomatal aperture correlates with the function of MusaSNAC1 as a drought-responsive NAC transcription factor. Present study suggests a prospective cross talk between shoot multiplication and drought responses coordinated by MusaSNAC1 in banana plants.

The online version contains supplementary material available at 10.1007/s13205-021-02744-5.

The online version contains supplementary material available at 10.1007/s13205-021-02744-5.The long non-coding RNA (lncRNA) LIFR-AS1 has been shown to be involved in the development of several human cancers. This study was designed to determine the expression profile and role of lncRNA-LIFR-AS1 in human thyroid cancer. The results showed significant (p  less then  0.05) upregulation of LncRNA-LIFR-AS1 in thyroid cancer tissues and cells. However, silencing of LncRNA-LIFR-AS1 inhibited the viability and proliferation of human thyroid cancer cells inducing G2/M cell cycle arrest. The G2/M phase cells increased from 8.56% in negative control (NC) to around 35.03% in si-LIFR-AS1. This was also found to be concomitant with the downregulation of cyclin B1 and CDK1 expressions. The thyroid cancer cells exhibited remarkably lower invasion and migration under transcriptional knockdown of lncRNA-LIFR-AS1 which was also associated with downregulation of MMP-2 and MMP-9 expression. Importantly, transcriptional silencing of lncRNA-LIFR-AS1 inhibited thyroid cancer tumorigenesis, in vivo. Collectively, the results suggest the tumor-promoting role of lncRNA-LIFR-AS1 in thyroid cancer and highlight its potential as therapeutic target.Tillandsia (Bromeliaceae) species have high endemism, and due to their strong ornamental potential, predatory extraction is threatening the extinction or drastic population reduction of many of them. In light of this scenario, it is necessary to find strategies for the conservation of these endangered species. The objective of this study was to evaluate two seed preservation strategies (freezing at - 5 °C and cryopreservation at - 196 °C) for 20 Tillandsia species occurring in the state of Bahia. We initially evaluated the morphometry, thousand-seed weight, and water content, followed by tests of germination and desiccation. After selecting the best result of the germination test (Germitest paper and incubation at 30 °C) and desiccation (3 h on silica gel), we established conservation tests utilizing two temperatures (freezing at - 5 °C and liquid nitrogen at - 196 °C), with storage times of 1, 7, 30, 180 and 450 days. Analysis of variance indicated that the 20 species had different behaviors when submitted to the two temperatures and different storage times. After 450 days there was a reduction in the germination percentage and germination speed index (GSI) of all the species studied when the seeds were preserved in the freezer. The storage in liquid nitrogen was efficient for the preservation of Tillandsia seeds when dried to a moisture content of approximately 7%. Our results support the establishment of a cryobank for Tillandsia to conserve these endemic species.The present work aimed to identify the roles of WWP2 (an E3 ubiquitin-protein ligase) and protein phosphatase 1 regulatory subunit 3A (PPP1R3A) in different pathological stages of cardiac arrhythmia development. Leptin-deficient mice (C57BLKS-Leprdb/Leprdb) were used for the development of initial and severe stages of cardiac arrhythmia. Histology, ECG, immunohistochemistry and Western blotting were used to analyse cardiac arrhythmia, WWP2 and PPP1R3A expression. Histopathological studies of 4-month-old mice showed cardiac degeneration, cellular lesions, and swollen tissue structure with loss of tissue elasticity, indicative of the initial condition of cardiac arrhythmia. The leptin-deficient 7-month-old mice showed cardiac tissue hardening with increased secretion of extracellular matrix. The development of initial- and severe-cardiac arrhythmia was further evident with electrocardiogram studies, which showed more PP interval variations as the disease progressed. At the molecular level, WWP2 showed marginal upregulation in the initial stages of arrhythmia and was predominantly expressed within nuclei. WWP2 was overexpressed 6.6-fold in the severe stage of cardiac arrhythmia and was spread throughout the tissue layer. Interestingly, PPP1R3A was significantly overexpressed in initial cardiac arrhythmia conditions, but was downregulated and restricted to more nuclear expression in advanced cardiac arrhythmia. Silencing of PPP1R3A, enhances the expression of WWP2 to 5.3-fold in initial stages, but remarkable variation not observed in advanced cardiac arrhythmia conditions. Our results suggest that PPP1R3A had a control over WWP2 in the initial stages of cardiac arrhythmia. In particular, PPP1R3A overexpression implies its potential protective effect in initial cardiac arrhythmia stages.The 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR; EC1.1.1.267), an NADPH-dependent reductase, plays a pivotal role in the methylerythritol 4-phosphate pathway (MEP), in the conversion of 1-deoxy-d-xylulose-5-phosphate (DXP) into MEP. Photochemical profiles, as well as pharmaceutical activities of Centella asiatica (L.), one of the most valuable medicinal plants, divulge the presence of secondary metabolites called Centellosides. Despite well-studied pharmaceutical activities, not much is known about the genes responsible for the synthesis of these compounds. In the present study, the full-length DXR gene sequence (JQ965955) of Centella submitted in NCBI was characterized using various bioinformatics tools and tissue specific differential expression studies were also carried out. The full-length CDNA of CaDXR contains an open reading frame (ORF) of 1425 bp which encodes a peptide of 474 amino acids. The molecular weight of this protein was found to be 51.5 kDa with isoelectric point of 6.33. The protein contains three conserved domain, namely NADPH (GSTGSIGT and LAAGSNV), substrate binding (LPADSEHSAI and NKGLEVIEAHY) and Cys-Ser-(Ala/Met/Val/Thr) cleavage-site domains.

Autoři článku: Lorentzenkirkland4625 (Singleton Weber)