Herskindrobbins5903
Surface incident solar radiation (Rs) of reanalysis products is widely used in ecological conservation, agricultural production, civil engineering and various solar energy applications. It is of great importance to have a good knowledge of the uncertainty of reanalysis Rs products. In this study, we evaluated the Rs estimates from two representative global reanalysis (ERA-Interim and MERRA-2) using quality- controlled surface measurements from China Meteorological Administration (CMA) and Multi-layer Simulation and Data Assimilation Center of the Tibetan Plateau (DAM) from 2000 to 2009. Error causes are further analyzed in combination radiation products from the Earth's Radiant Energy System (CERES) EBAF through time series estimation, hotspot selection and Geodetector methods. Both the ERA-Interim and MERRA-2 products overestimate the Rs in China, and the MERRA-2 overestimation is more pronounced. The errors of the ERA-Interim are greater in spring and winter, while that of the MERRA-2 are almost the same in all seasons. As more quality-controlled measurements were used for validation, the conclusions seem more reliable, thereby providing scientific reference for rational use of these datasets. It was also found that the main causes of errors are the cloud coverage in the southeast coastal area, aerosol optical depth (AOD) and water vapor content in the Sichuan Basin, and cloud coverage and AOD in the northeast and middle east of China.Numerous studies have investigated the association of MIR499A rs3746444 polymorphism with breast cancer susceptibility, but the results have been inconsistent. In this work, we performed a meta-analysis to obtain a more reliable estimate of the association between the polymorphism and susceptibility to breast cancer. A comprehensive literature search was conducted on PubMed, Scopus, Web of Science (WoS), China National Knowledge Infrastructure (CNKI), VIP and Wanfang databases up to January 2020. A total of 14 studies involving 6,797 cases and 8,534 controls were included for analysis under five genetic models homozygous (GG vs. AA), heterozygous (AG vs. AA), dominant (AG + GG vs. AA), recessive (GG vs. AA + AG) and allele (G vs. A). A statistically significant association was observed between the polymorphism and an increased breast cancer susceptibility under all genetic models (homozygous, OR = 1.33, 95% CI = 1.03-1.71, P = 0.03; heterozygous, OR = 1.08, 95% CI = 1.00-1.16, P = 0.04; dominant, OR = 1.15, 95% CI = 1.02-1.30; P = 0.03; recessive, OR = 1.35, 95% CI = 1.06-1.72, P = 0.01; allele, OR = 1.12, 95% CI = 1.00-1.26, P = 0.04). Subgroup analysis based on ethnicity suggested that significant association was present only among Asians, but not Caucasians. In conclusion, MIR499A rs3746444 polymorphism was significantly associated with breast cancer susceptibility among Asians, suggesting its potential use as a genetic risk marker in this population.Mice are the most commonly used laboratory animals for studying diseases, behaviour, and pharmacology. Behavioural experiment battery aids in evaluating abnormal behaviour in mice. During behavioural experiments, mice frequently experience human contact. However, the effects of repeated handling on mice behaviour remains unclear. To minimise mice stress, methods of moving mice using transparent tunnels or cups have been recommended but are impractical in behavioural tests. To investigate these effects, we used a behavioural test battery to assess differences between mice accustomed to the experimenter's handling versus control mice. Repeatedly handled mice gained slightly more weight than control mice. In behavioural tests, repeatedly handled mice showed improved spatial cognition in the Y-maze test and reduced anxiety-like behaviour in the elevated plus-maze test. MK-0859 However, there was no change in anxiety-like behaviour in the light/dark transition test or open-field test. Grip strength, rotarod, sociability, tail suspension, Porsolt forced swim, and passive avoidance tests revealed no significant differences between repeatedly handled and control mice. Our findings demonstrated that mice repeatedly handled by the experimenter before behavioural tests showed reduced anxiety about high altitudes and improved spatial cognition, suggesting that repeated contact can affect the results of some behavioural tests.A critical global health need exists for a Zika vaccine capable of mitigating the effects of future Zika epidemics. In this study we evaluated the antibody responses and efficacy of an aluminum hydroxide adjuvanted purified inactivated Zika vaccine (PIZV) against challenge with Zika virus (ZIKV) strain PRVABC59. Indian rhesus macaques received two doses of PIZV at varying concentrations ranging from 0.016 µg - 10 µg and were subsequently challenged with ZIKV six weeks or one year following the second immunization. PIZV induced a dose-dependent immune response that was boosted by a second immunization. Complete protection against ZIKV infection was achieved with the higher PIZV doses of 0.4 µg, 2 µg, and 10 µg at 6 weeks and with 10 ug PIZV at 1 year following vaccination. Partial protection was achieved with the lower PIZV doses of 0.016 µg and 0.08 µg. Based on these data, a neutralizing antibody response above 3.02 log10 EC50 was determined as a correlate of protection in macaques. PIZV elicited a dose-dependent neutralizing antibody response which is protective for at least 1 year following vaccination.In this study, FeSO4 supplementation ranging from 0 to 4.5 mM, and MgSO4 supplementation ranging from 0 to 5.1 mM were investigated to observe the effect on the population dynamics, biochemical composition and fatty acid content of mixed microalgae grown in Anaerobic Liquid Digestate (ALD). Overall, 3.1 mM FeSO4 addition into ALD increased the total protein content 60% and led to highest biomass (1.56 g L-1) and chlorophyll-a amount (18.7 mg L-1) produced. Meanwhile, 0.4 mM MgSO4 addition increased the total carotenoid amount 2.2 folds and slightly increased the biomass amount. According to the microbial community analysis, Diphylleia rotans, Synechocystis PCC-6803 and Chlorella sorokiniana were identified as mostly detected species after confirmation with 4 different markers. The abundance of Chlorella sorokiniana and Synechocystis PCC-6803 increased almost 2 folds both in iron and magnesium addition. On the other hand, the dominancy of Diphylleia rotans was not affected by iron addition while drastically decreased (95%) with magnesium addition. link2 This study helps to understand how the dynamics of symbiotic life changes if macro elements are added to the ALD and reveal that microalgae can adapt to adverse environmental conditions by fostering the diversity with a positive effect on high value product.By tuning the physical and chemical pressures of layered perovskite materials we can realize the quantum states of both superconductors and insulators. By reducing the thickness of a layered crystal to a nanometer level, a nanofilm crystal can provide novel quantum states that have not previously been found in bulk crystals. Here we report the realization of high-temperature superconductivity in Ca2RuO4 nanofilm single crystals. Ca2RuO4 thin film with the highest transition temperature Tc (midpoint) of 64 K exhibits zero resistance in electric transport measurements. The superconducting critical current exhibited a logarithmic dependence on temperature and was enhanced by an external magnetic field. Magnetic measurements revealed a ferromagnetic transition at 180 K and diamagnetic magnetization due to superconductivity. Our results suggest the co-appearance of superconductivity and ferromagnetism in Ca2RuO4 nanofilm crystals. We also found that the induced bias current and the tuned film thickness caused a superconductor-insulator transition. link3 The fabrication of micro-nanocrystals made of layered material enables us to discuss rich superconducting phenomena in ruthenates.Intrinsically disordered proteins (IDPs) are involved in various important biological processes, such as cell signalling, transcription, translation, cell division regulation etc. Many IDPs need to maintain their disordered conformation for proper function. Osmolytes, natural organic compounds responsible for maintaining osmoregulation, have been believed to regulate the functional activity of macromolecules including globular proteins and IDPs due to their ability of modulating the macromolecular structure, conformational stability, and functional integrity. In the present study, we have investigated the effect of all classes of osmolytes on two model IDPs, α- and β-casein. It was observed that osmolytes can serve either as folding inducers or folding evaders. Folding evaders, in general, do not induce IDP folding and therefore had no significant effect on structural and functional integrity of IDPs. On the other hand, osmolytes taurine and TMAO serve as folding inducers by promoting structural collapse of IDPs that eventually leads to altered structural and functional integrity of IDPs. This study sheds light on the osmolyte-induced regulation of IDPs and their possible role in various disease pathologies.Glycosaminoglycans (GAGs) are polysaccharides produced by most mammalian cells and involved in a variety of biological processes. However, due to the size and complexity of GAGs, detailed knowledge about the structure and expression of GAGs by cells, the glycosaminoglycome, is lacking. Here we report a straightforward and versatile approach for structural domain mapping of complex mixtures of GAGs, GAGDoMa. The approach is based on orthogonal enzymatic depolymerization of the GAGs to generate internal, terminating, and initiating domains, and nanoflow reversed-phase ion-pairing chromatography with negative mode higher-energy collision dissociation (HCD) tandem mass spectrometry (MS/MS) for structural characterization of the individual domains. GAGDoMa provides a detailed structural insight into the glycosaminoglycome, and offers an important tool for deciphering the complexity of GAGs in cellular physiology and pathology.Ligation-mediated PCR (LM-PCR) is a classical method for isolating flanking sequences; however, it has a common limitation of reduced success rate owing to the circularization or multimerization of target restriction fragments including the known sequence. To address this limitation, we developed a novel LM-PCR method, termed Cyclic Digestion and Ligation-Mediated PCR (CDL-PCR). The novelty of this approach involves the design of new adapters that cannot be digested after being ligated with the restriction fragment, and cyclic digestion and ligation may be manipulated to block the circularization or multimerization of the target restriction fragments. Moreover, to improve the generality and flexibility of CDL-PCR, an adapter precursor sequence was designed, which could be digested to prepare 12 different adapters at low cost. Using this method, the flanking sequences of T-DNA insertions were obtained from transgenic rice and Arabidopsis thaliana. The experimental results demonstrated that CDL-PCR is an efficient and flexible method for identifying the flanking sequences in transgenic rice and Arabidopsis thaliana.