Mattinglydesai3139
A set of metal carbonyl cluster-boronic acid conjugates of the group VIII metals (Fe, Ru, and Os) were synthesized and their antiproliferative effects measured against two breast cancer cell lines (MCF-7 and MDA-MB-231) and a noncancerous breast epithelial (MCF-10A) cell line. The cytotoxicity followed the order Ru > Os > Fe for the MDA-MB-231 cells, although the latter two exhibited similar cytotoxicity against MCF-7 and MCF-10A cells. The osmium species Os3(CO)10(μ-H)[μ-SC6H4-p-B(OH)2] (2) could be chemically oxidized to its hydroxy analogue [Os3(CO)10(μ-H)(μ-SC6H4 -p-OH)] (2-OH), which showed comparable cytotoxicity. Mode of action studies pointed to an apoptotic pathway for cell death.The tetrel bond formed by HC≡CX, H2C=CHX, and H3CCH2X (X=F, Cl, Br, I) as an electron donor and TH3F (T=C, Si, Ge) was explored by ab initio calculations. The tetrel bond formed by H3CCH2X is the strongest, as high as -3.45 kcal/mol for the H3CCH2F···GeH3F dimer, followed by H2C=CHX, and the weakest bond is from HC≡CX, where the tetrel bond can be as small as -0.8 kcal/mol. The strength of the tetrel bond increases in the order of C less then Si less then Ge. this website For the H3CCH2X and HC≡CX complexes, the tetrel bond strength shows a similar increasing tendency with the decrease of the electronegativity of the halogen atom. Electrostatic interaction plays the largest role in the stronger tetrel bonds, while dispersion interaction makes an important contribution to the H2C=CHX complexes.In this study, we first synthesized metal-free N,Cl-doped carbon dots (N,Cl-CDs) using Impatiens balsamina L. stems as green precursors in a deep eutectic solvent (DES). The obtained N,Cl-CDs were characterized through transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, fluorescence (FL) spectroscopy, and ultraviolet (UV) spectroscopy. In addition to the common features of carbon dots (CDs), such as high light stability, small size, low toxicity, good aqueous solubility, and favorable biocompatibility, these N,Cl-CDs exhibited excellent recognition and selectivity for Gram-positive bacteria by doping with N and Cl elements using DES. The N,Cl-CDs with positive charge cannot only differentiate Gram-positive bacteria by selective fluorescence imaging but also have antibacterial effects on Gram-positive bacteria. Through potential, ROS, and morphological analyses of bacteria before and after treatment with N,Cl-CDs, the antibacterial mechanisms of bacteriostasis, Enterococcus faecium, Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, and Salmonella were explored. In addition, N,Cl-CDs demonstrated low cytotoxicity and good cell imaging ability in cancer and normal cells. Moreover, they can be used as a fluorescence sensor for the detection of ClO- with a detection range from 100 nM to 40 μM and a limit of detection (LOD) of 30 nM. In summary, the prepared N,Cl-CDs could be applied as environmentally friendly Gram-positive bacterial identification and antibacterial agents. Additionally, their cell imaging and ClO- detection abilities were outstanding.Earlier, various attempts to develop graphene structures using chemical and nonchemical routes were reported. Being efficient, scalable, and repeatable, 3D printing of graphene-based polymer inks and aerogels seems attractive; however, the produced structures highly rely on a binder or an ice support to stay intact. The presence of a binder or graphene oxide hinders the translation of the excellent graphene properties to the 3D structure. In this communication, we report our efforts to synthesize a 3D-shaped 3D graphene (3D2G) with good quality, desirable shape, and structure control by combining 3D printing with the atmospheric pressure chemical vapor deposition (CVD) process. Direct ink writing has been used in this work as a 3D-printing technique to print nickel powder-PLGA slurry into various shapes. The latter has been employed as a catalyst for graphene growth via CVD. Porous 3D2G with high purity was obtained after etching out the nickel substrate. The conducted micro CT and 2D Raman study of pristine 3D2G revealed important features of this new material. The interconnected porous nature of the obtained 3D2G combined with its good electrical conductivity (about 17 S/cm) and promising electrochemical properties invites applications for energy storage electrodes, where fast electron transfer and intimate contact with the active material and with the electrolyte are critically important. By changing the printing design, one can manipulate the electrical, electrochemical, and mechanical properties, including the structural porosity, without any requirement for additional doping or chemical postprocessing. The obtained binder-free 3D2G showed a very good thermal stability, tested by thermo-gravimetric analysis in air up to 500 °C. This work brings together two advanced manufacturing approaches, CVD and 3D printing, thus enabling the synthesis of high-quality, binder-free 3D2G structures with a tailored design that appeared to be suitable for multiple applications.Initiation of colorectal carcinogenesis may be induced by chromosomal instability caused by oxidative stress or indirectly by bacterial infections. Moreover, proliferating tumor cells are characterized by reprogrammed glucose metabolism, which is associated with upregulation of PDK1 and LDHA enzymes. In the present study, some 4,5,6,7-tetrahydrobenzo[b]thiophene derivatives in addition to Fe3O4 and Fe3O4/SiO2 nanoparticles (NPs) supported with a new Schiff base were synthesized for biological evaluation as PDK1 and LDHA inhibitors as well as antibacterial, antioxidant, and cytotoxic agents on LoVo and HCT-116 cells of colorectal cancer (CRC). The results showed that compound 1b is the most active as PDK1 and LDHA inhibitor with IC50 values (μg/mL) of 57.10 and 64.10 compared to 25.75 and 15.60, which were produced by the standard inhibitors sodium dichloroacetate and sodium oxamate, respectively. NPs12a,b and compound 1b exhibited the strongest antioxidant properties with IC50 values (μg/mL) of 80.0, 95.0, and 110.0 μg/mL, respectively, compared to 54.0 μg/mL, which was produced by butylated hydroxy toluene. Moreover, NPs12a and carbamate derivative 3b exhibited significant cytotoxic activities with IC50 values (μg/mL) of 57.15 and 81.50 (LoVo cells) and 60.35 and 71.00 (HCT-116 cells). Thus, NPs12a and compound 3b would be considered as promising candidates suitable for further optimization to develop new chemopreventive and chemotherapeutic agents against these types of CRC cell lines. Besides, molecular docking in the colchicine binding site of the tubulin (TUB) domain revealed a good binding affinity of 3b to the protein; in addition, the absorption, distribution, metabolism, and excretion (ADME) analyses showed its desirable drug-likeness and oral bioavailability characteristics.A coordination polymer with the composition C12H20O16Zn2 (ZnBTC) (BTC = benzene-1,3,5-tricarboxylate) was synthesized under hydrothermal conditions at 120 °C, and its crystal structure was determined using single-crystal X-ray crystallography. First-principles electronic structure investigation of the compound was carried out using the density functional theory computational approach. The highest occupied molecular orbital, the lowest unoccupied molecular orbital, the energy gap, and the global reactivity descriptors of ZnBTC were investigated in both the gas phase and the solvent phase using the implicit solvation model, while the donor-acceptor interactions were studied using natural bond orbital analyses. The results revealed that ZnBTC is more stable but less reactive in solvent medium. The larger stabilization energy E (2) indicates a greater interaction of ZnBTC in the solvent than in the gas phase. Orange peel activated carbon and banana peel activated carbon chemically treated with ZnCl2 and/or KOH wegradation efficiency of methyl orange in aqueous solutions using ZnBTC as a photocatalyst was found to be 52 %, while that of the nanocomposites were enhanced up to 79 %.During cementing operation with oil-based drilling fluids, the casing and well wall are in the "oil wet" environment, and the cement slurry cannot achieve good cementation with the second interface, which seriously affects the cementation quality of the cementing interface. Therefore, it is very important to select a flushing fluid with good performance and high flushing efficiency for cementing operation with an oil-based drilling fluid. An integrated measurement system of interface parameters and a rotating liquid interface tension tester is selected in the room. A set of evaluation methods of wetting reversal is developed to evaluate the wetting reversal ability of type A and type-B flushing fluids on site to optimize the reasonable type and concentration of the flushing fluid. The experimental results show that under the same concentration, the surface tension and interfacial tension of type A flushing solution are lower than those of type-B; that is, the hydrophilic effect of type A flushing solution is the operator's ability to grasp the cementing quality. To guide the field practice has a very important practical significance, but it also has a guiding role for the development of new pre-liquid products.Anaerobic digestion is an important way for maintaining sewage sludge stability, reduction, and resource recovery. However, the low organic content generally limits methane production. Recently, thermal hydrolysis has been widely used for sludge pretreatment to improve the anaerobic digestion efficiency. Generally, an increased temperature is preferred to enhance the solubility of organic matters in the sludge. However, high energy requirement comes with increased temperature. Application of low-temperature thermal treatment could overcome this drawback. However, the appropriate low-temperature pretreatment time is still uncertain. In this study, an extended contact time with low thermal pretreatment (90 °C) was chosen to realize a more efficient and economical digestion process of low-organic content sludge. The results demonstrated that the solubilization of proteins and carbohydrates was significantly promoted by the contact time-extended thermal hydrolysis pretreatment. The following anaerobic digestion efficiency of low-organic content sludge was also dramatically improved with the prolonged contact time. The maximum methane production could reach around 294.73 mL/gVS after 36 h of 90 °C treatment, which was 5.56 times that of the untreated groups. Additionally, based on the energy balance calculation, extending the thermal hydrolysis time resulted in a more economically feasible anaerobic digestion than increasing the temperature. The dewatering properties and the stability of the heavy metals were also reinforced, implying the advanced deep utilization of the digested low-organic content sludge. In conclusion, sludge pretreated by low-temperature thermal hydrolysis with a prolonged contact time could be more effective for low-organic content sludge treatment and disposal.