Corbettraymond1236
Performance-stability contradiction of high-energy-density materials (HEDMs) is a long-standing puzzle in the field of chemistry and material science. Bridging the gap that exists between detonation performance of new HEDMs and their stability remains a formidable challenge. Achieving optimal balance between the two contradictory factors is of a significant demand for deep-well oil and gas drilling, space exploration, and other civil and defense applications. Herein, supercomputers and latest quantitative computational strategies were employed and high-throughput quantum calculations were conducted for 67 reported HEDMs. Based on statistical analysis of large amounts of physico-chemical data, in-crystal interspecies interactions were identified to be the one that provokes the performance-stability contradiction of HEDMs. To design new HEDMs with both good detonation performance and high stability, the proposed systematic and comprehensive strategies must be satisfied, which could promote the development of crystal engineering of HEDMs to an era of theory-guided rational design of materials. Rechargeable Zn-ion batteries working with manganese oxide cathodes and mild aqueous electrolytes suffer from notorious cathode dissolution during galvanostatic cycling. Herein, for the first time we demonstrate the dynamic self-recovery chemistry of manganese compound during charge/discharge processes, which strongly determines the battery performance. A cobalt-modified δ-MnO2 with a redox-active surface shows superior self-recovery capability as a cathode. The cobalt-containing species in the cathode enable efficient self-recovery by continuously catalyzing the electrochemical deposition of active Mn compound, which is confirmed by characterizations of both practical coin-type batteries and a new-design electrolyzer system. Under optimized condition, a high specific capacity over 500 mAh g-1 is achieved, together with a decent cycling performance with a retention rate of 63% over 5,000 cycles. With this cobalt-facilitated deposition effect, the battery with low concentration (0.02 M) of additive Mn2+ in the electrolyte (only 12 atom % to the overall Mn) maintains decent capacity retention. Parvalbumin-expressing fast-spiking interneurons (PV-INs) control network firing and the gain of cortical response to sensory stimulation. Crucial for these functions, PV-INs can sustain high-frequency firing with no accommodation. However, PV-INs also exhibit short-term depression (STD) during sustained activation, largely due to the depletion of synaptic resources (vesicles). In most synapses the rate of replenishment of depleted vesicles is constant, determining an inverse relationship between depression levels and the activation rate, which theoretically, severely limits rate-coding capabilities. We examined STD of the PV-IN to pyramidal cell synapse in the mouse visual cortex and found that in these synapses the recovery from depression is not constant but increases linearly with the frequency of use. By combining modeling, dynamic clamp, and optogenetics, we demonstrated that this recovery enables PV-INs to reduce pyramidal cell firing in a linear manner, which theoretically is crucial for controlling the gain of cortical visual responses. In our previous studies, enhancer of zeste homolog 2 (EZH2) has been proven to be a key oncogenic driver in oral squamous cell carcinoma (OSCC). However, the regulatory mechanisms on EZH2 remain poorly understood in OSCC. Here, through multi-transcriptomics, bioinformatics analysis, and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), the co-expression network of long noncoding RNA RC3H2 (RC3H2), microRNA-101-3p (miR-101-3p), and EZH2 were screened and validated as a competing endogenous RNA (ceRNA) mechanism in OSCC. Silencing of RC3H2 inhibited OSCC cell proliferation, colony formation, migration, and invasion in vitro and reduced the expression of EZH2 and H3K27Me3, whereas RC3H2 overexpression significantly promoted OSCC cell growth, colony formation, migration, invasion, and xenograft tumor growth in vivo and increased the expression of EZH2 and H3K27Me3. A fluorescence in situ hybridization (FISH) assay verified that RC3H2 was predominately localized to the cytoplasm. RNA pull-down and luciferase activity assays showed that miR-101-3p was physically bound to RC3H2 as well as EZH2, and its inhibitor reversed the inhibitory effect of RC3H2 knockdown on progression of OSCC. Taken together, our findings demonstrate that RC3H2 as completive endogenous RNA sponging miR-101-3p targets EZH2 and facilitates OSCC cells' malignant behavior. Differences in individual drug responses are obstacles in breast cancer (BRCA) treatment, so predicting responses would help to plan treatment strategies. The accumulation of cancer molecular profiling and drug response data provide opportunities and challenges to identify novel molecular signatures and mechanisms of tumor responsiveness to drugs in BRCA. This study evaluated drug responses with a multi-omics integrated system that depended on long non-coding RNAs (lncRNAs). We identified drug response-related lncRNAs (DRlncs) by combining expression data of lncRNA, microRNA, messenger RNA, methylation levels, somatic mutations, and the survival data of cancer patients treated with drugs. We constructed an integrated and computational multi-omics approach to identify DRlncs for diverse chemotherapeutic drugs in BRCA. Some DRlncs were identified with Adriamycin, Cytoxan, Tamoxifen, and all samples for BRCA patients. These DRlncs showed specific features regarding both expression and computational accuracies. The DRlnc-gene co-expression networks were constructed and analyzed. Key DRlncs, such as HOXA-AS2 (Ensembl ENSG00000253552), in the drug Adriamycin were characterized. The experimental analysis also suggested that HOXA-AS2 (Ensembl ENSG00000253552) was a key DRlnc in Adriamycin drug resistance in BRCA patients. Some DRlncs were associated with survival and some specific functions. A possible mechanism of DRlnc HOXA-AS2 (Ensembl ENSG00000253552) in the Adriamycin drug response for BRCA resistance was inferred. In summary, this study provides a framework for lncRNA-based evaluation of clinical drug responses in BRCA. Understanding the underlying molecular mechanisms of drug responses will facilitate improved responses to chemotherapy and outcomes of BRCA treatment. Hypoxic-ischemic brain damage (HIBD) is a major cause of fatality and morbidity in neonates. However, current treatment approaches to alleviate HIBD are not effective. Various studies have highlighted the role of microRNAs (miRNAs) in various biological functions in multiple diseases. This study investigated the role of miR-339-5p in HIBD progression. Neonatal HIBD mouse model was induced by ligation of the right common carotid artery. Neuronal cell model exposed to oxygen-glucose deprivation (OGD) was also established. The miR-339-5p expression in mouse brain tissues and neuronal cells was quantified, and the effects of miR-339-5p on neuronal cell activity and apoptosis induced by hypoxia-ischemia were explored. The overexpression or knockdown of long non-coding RNA (lncRNA) nuclear-enriched abundant transcript 1 (NEAT1) in hippocampal neurons was used to determine the effect of lncRNA NEAT1 on the expression of miR-339-5p and homeobox A1 (HOXA1) and apoptosis. Short hairpin RNA targeting lncRNA NEAT1 and miR-339-5p antagomir were used in neonatal HIBD mice to identify their roles in HIBD. Our results revealed that miR-339-5p was downregulated in neonatal HIBD mice and neuronal cells exposed to OGD. Downregulated miR-339-5p promoted neuronal cell viability and suppressed apoptosis during hypoxia-ischemia. Moreover, lncRNA NEAT1 competitively bound to miR-339-5p to increase HOXA1 expression and inhibited neuronal cell apoptosis under hypoxic-ischemic conditions. The key observations of the current study present evidence demonstrating that lncRNA NEAT1 upregulated HOXA1 to alleviate HIBD in mice by binding to miR-339-5p. N6-methyladenosine (m6A) is the most prevalent eukaryotic messenger RNA modification. Diabetic cataract (DC) is caused by high glucose (HG) in diabetes mellitus. However, the regulatory mechanism of m6A in the DC pathogenesis is poorly understood. In present research, we performed the m6A-RNA immunoprecipitation sequencing (MeRIP-Seq) analysis and detected the m6A modification profile in the HG- or normal glucose (NG)-induced human lens epithelial cells (HLECs). Results revealed that methyltransferase-like 3 (METTL3) was upregulated in the DC tissue specimens and HG-induced HLECs. Besides, total m6A modification level was higher in the HG-induced HLECs. Functionally, METTL3 knockdown promoted the proliferation and repressed the apoptosis of HLECs induced by HG. MeRIP-Seq analysis revealed that ICAM-1 might act as the target of METTL3. Mechanistically, METTL3 targets the 3' UTR of ICAM-1 to stabilize mRNA stability. In conclusion, this research identified the regulation of METTL3 in the HG-induced HLECs, providing a potential insight of the m6A modification for DC. The scalability of Microbial fuel cells (MFCs) is key to the development of stacks. A recent study has shown that self-stratifying membraneless MFCs (S-MFCs) could be scaled down to 2 cm without performance deterioration. However, the scaling-up limit of S-MFC is yet unknown. Here the study evaluates the scale-up height of S-MFCs treating urine, from 2 cm, 4 cm to 12 cm high electrodes. The electrochemical properties of the S-MFCs were investigated after steady-states were established, following a 70-days longevity study. The electrochemical properties of the 2 cm and 4 cm conditions were similar (5.45 ± 0.32 mW per cascade). Conversely, the 12 cm conditions had much lower power output (1.48 ± 0.15 mW). The biofilm on the 12 cm cathodes only developed on the upper 5-6 cm of the immersed part of the electrode suggesting that the cathodic reactions were the limiting factor. This hypothesis was confirmed by the cathode polarisations showing that the 12 cm S-MFC had low current density (1.64 ± 9.53 µA cm-2, at 0 mV) compared to the other two conditions taht had similar current densities (192.73 ± 20.35 µA cm-2, at 0 mV). These results indicate that S-MFC treating urine can only be scaled-up to an electrode height of around 5-6 cm before the performance is negatively affected. EPZ005687 clinical trial PURPOSE The aim of the present study was to evaluate whether texture features extracted from 18F-FDG PET/CT images may provide additional prognostic information in patients with metastatic nasopharyngeal carcinoma (NPC). MATERIALS AND METHOD We retrospectively examined 52 patients with metastatic NPC who underwent assessment of EBV DNA titers and pretreatment 18F-FDG PET/CT imaging. All participants were followed up for at least two years. The following 18F-FDG PET parameters were analyzed standardized uptake value (SUV), metabolic tumor volume (MTV), total lesion glycolysis (TLG), and texture parameters. Independent predictors of outcomes were identified using receiver operating characteristic curve analysis and multivariate Cox proportional hazards models. RESULTS On multivariate analysis, EBV DNA titers > 3500 copies/mL and TLG of metastatic lesions > 138 mL were identified as independent predictors of overall survival (OS) (P = 0.036 and P = 0.047, respectively). Patients were divided into two subgroups based on their EBV DNA titers (high versus low).