Anderssonnymand2572
Considering that apatite crystals are nucleated at the gap zone and subsequently grown along the collagen fibril, the heterogeneous and anisotropic nature of piezoelectric properties highlights the physiological importance of the collagen piezoelectricity in bone mineralization.Thin films are of interest in materials design because they allow for the modification of surface properties of materials while the bulk properties of the material are largely unaffected. In this work, we outline methods for the assembly of thin films using a technique known as layer-by-layer (LbL). Furthermore, their interactions with human mesenchymal stromal cells (hMSCs) are discussed. hMSCs are a subject of growing interest because of their potential to treat or cure diseases, given their immunosuppressive properties, multipotent differentiation capabilities, and tissue regeneration capabilities. Numerous improvements and modifications have been suggested for the harvesting, treatment, and culture of hMSCs prior to their administration in human subjects. Here, we discuss methods to assess the interactions of hMSCs with thin LbL-assembled films of heparin and collagen. Three different methods are discussed. The first details the preparation of heparin/collagen multilayers on different surfaces and the seeding of cells on these multilayers. The second method details the characterization of multilayers, including techniques to assess the thickness, roughness, and surface charge of the multilayers, as well as in situ deposition of multilayers. The third method details the analysis of cell interactions with the multilayers, including techniques to assess proliferation, viability, real-time monitoring of hMSC behavior, analysis of hMSC-adhesive proteins on the multilayers, immunomodulatory factor expression of hMSCs, and cytokine expression on heparin/collagen multilayers. We propose that the methods described in this work will assist in the design and characterization of LbL-assembled thin films and the analysis of hMSCs cultured on these thin films.Hydrogels are extraordinarily versatile by design and can enhance repair in diseased and injured musculoskeletal tissues. Biological fixation of these constructs is a significant determinant factor that is critical to the clinical success and functionality of regenerative technologies for musculoskeletal repair. In the context of an intervertebral disc (IVD) herniation, nucleus pulposus tissue protrudes through the ruptured annulus fibrosus (AF), consequentially impinging on spinal nerve roots and causing debilitating pain. Discectomy is the surgical standard of care to treat symptomatic herniation; however these procedures do not repair AF defects, and these lesions are a significant risk factor for recurrent herniation. Biricodar Advances in tissue engineering utilize adhesive hydrogels as AF sealants; however these repair strategies have yet to progress beyond preclinical animal models because these biomaterials are often plagued by poor integration with AF tissue and lead to large variability in repair outcomes. Thlish mechanical benchmarks for translation and ensure clinical feasibility.The development of a biomimetic scaffold designed to provide a native extracellular matrix (ECM)-like microenvironment is a potential strategy for cartilage repair. The ECM in native articular cartilage is structurally composed of three different architectural zones, i.e., horizontally aligned, randomly arranged, and vertically aligned collagen fibers. However, the effects of scaffolds with these three different ECM-like architectures on in vivo cartilage regeneration are not clear. In this study, we aim to systematically investigate and compare their in situ inductive regenerative efficacy on cartilage defects. ECM-mimetic silk fibroin scaffolds with horizontally aligned, vertically aligned, and random pore architectures are fabricated using the controlled directional freezing technique. All of these scaffolds exhibit similar pore area, swelling ratio, and in vitro degradation behavior. Nevertheless, the aligned scaffolds have a higher pore aspect ratio and hydrophilicity, and increase the proliferation of bone marrow-derived mesenchymal stem cells (BMSCs) in vitro. When implanted into rabbit osteochondral defects, the scaffold with vertically aligned pore architectures provides a more cell-favorable microenvironment conducive to endogenous BMSCs than other scaffolds and supports the simultaneous regeneration of cartilage and subchondral bone. These findings indicate that scaffolds with vertically aligned ECM-like architectures serve as an effective cell-free and growth factor-free scaffold for enhanced endogenous osteochondral regeneration.Silk fibroin produced from silkworms has been intensively utilized as a scaffold material for a variety of biotechnological applications owing to its remarkable mechanical strength, extensibility, biocompatibility, and ease of biofunctionalization. In this research, we engineered silk as a novel trap platform capable of capturing microorganisms. Specifically, we first fabricated the silk material into a silk sponge by lyophilization, yielding a 3D scaffold with porous microstructures. The sponge stability in water was significantly improved by ethanol treatment with elevated β-sheet content and crystallinity of silk. Next, we biofunctionalized the silk sponge with a poly-specific microbial targeting molecule, ApoH (apolipoprotein H), to enable a novel silk-based microbial trap. The recombinant ApoH engineered with an additional penta-tyrosine was assembled onto the silk sponge through the horseradish peroxidase (HRP) mediated dityrosine cross-linking. Last, the ApoH-decorated silk sponge was demonstrated to be functional in capturing our model microorganism targets, E. coli and norovirus-like particles. We envision that this biofabricated silk platform, capable of trapping a variety of microbial entities, could serve as a versatile scaffold for rapid isolation and enrichment of microbial samples toward future diagnostics and therapeutics. This strategy, in turn, can expedite advancing future biodevices with functionality and sustainability.In recent years, an increasing rate of mortality due to myocardial infarction (MI) has led to the development of nanobased platforms, especially gold nanoparticles (AuNPs), as promising nanomaterials for diagnosis and treatment of MI. These promising NPs have been used to develop different nanobiosensors, mainly optical sensors for early detection of biomarkers as well as biomimetic/bioinspired platforms for cardiac tissue engineering (CTE). Therefore, in this Review, we presented an overview on the potential application of AuNPs as optical (surface plasmon resonance, colorimetric, fluorescence, and chemiluminescence) nanobiosensors for early diagnosis and prognosis of MI. On the other hand, we discussed the potential application of AuNPs either alone or with other NPs/polymers as promising three-dimensional (3D) scaffolds to regulate the microenvironment and mimic the morphological and electrical features of cardiac cells for potential application in CTE. Furthermore, we presented the challenges and ongoing efforts associated with the application of AuNPs in the diagnosis and treatment of MI. In conclusion, this Review may provide outstanding information regarding the development of AuNP-based technology as a promising platform for current MI treatment approaches.A hierarchical machine learning (HML) framework is presented that uses a small dataset to learn and predict the dominant build parameters necessary to print high-fidelity 3D features of alginate hydrogels. We examine the 3D printing of soft hydrogel forms printed with the freeform reversible embedding of suspended hydrogel method based on a CAD file that isolated the single-strand diameter and shape fidelity of printed alginate. Combinations of system variables ranging from print speed, flow rate, ink concentration to nozzle diameter were systematically varied to generate a small dataset of 48 prints. Prints were imaged and scored according to their dimensional similarity to the CAD file, and high print fidelity was defined as prints with less than 10% error from the CAD file. As a part of the HML framework, statistical inference was performed, using the least absolute shrinkage and selection operator to find the dominant variables that drive the error in the final prints. Model fit between the system parameters and print score was elucidated and improved by a parameterized middle layer of variable relationships which showed good performance between the predicted and observed data (R2 = 0.643). Optimization allowed for the prediction of build parameters that gave rise to high-fidelity prints of the measured features. A trade-off was identified when optimizing for the fidelity of different features printed within the same construct, showing the need for complex predictive design tools. A combination of known and discovered relationships was used to generate process maps for the 3D bioprinting designer that show error minimums based on the chosen input variables. Our approach offers a promising pathway toward scaling 3D bioprinting by optimizing print fidelity via learned build parameters that reduce the need for iterative testing.Leukemia is a liquid tumor caused by a hematopoietic stem cell malignant clone, which seriously affects the normal function of the hematopoietic system. Conventional drugs have poor therapeutic effects due to their poor specificity and stability. With the development of nanotechnology, nonviral nanoparticles bring hope for the efficient treatment of leukemia. Nanoparticles are easily modified. They can be designed to target lesion sites and control drug release. Thereby, nanoparticles can improve the effects of drugs and reduce side effects. This review mainly focuses on and summarizes the current research progress of nanoparticles to deliver different leukemia therapeutic drugs, as to demonstrate the potential of nanoparticles in leukemia treatment.We developed four types of para-phenylene-bridged periodic mesoporous organosilica NPs (p-P PMO NPs) with tailored physical parameters including size, morphology, porosity, and surface area using a new polymer-scaffolding approach. The particles have been formulated to facilitate the codelivery of small-molecule hydrophobic/hydrophilic cargos such as model anticancer drugs (i.e., doxorubicin hydrochloride (DOX) and O6-benzylguanine) and model fluorescent dyes (i.e., rhodamine 6G and Nile red). p-P PMO NPs were synthesized via a cetyltrimethylammonium bromide (CTAB)-directed sol-gel process using two different organic solvents and in the presence of polymeric scaffolding constituents that led to morphologically distinct PMO NPs despite using the same organosilane precursors. After the formulation process, the polymeric scaffolding agent was conveniently washed away from the PMO NPs. Extensive analyses were used to characterize the physicochemical attributes of the PMO NPs such as their chemical composition, moity to improve the therapeutic index for cancers.Arterial wall injury often leads to endothelium cell activation, endothelial detachment, and atherosclerosis plaque formation. While abundant research efforts have been placed on treating the end stages of the disease, no cure has been developed to repair injured and denude endothelium often occurred at an early stage of atherosclerosis. Here, a pretargeting cell delivery strategy using combined injured endothelial targeting nanoparticles and bioorthogonal click chemistry approach was developed to deliver endothelial cells to replenish the injured endothelium via a two-step process. First, nanoparticles bearing glycoprotein 1b α (Gp1bα) proteins and tetrazine (Tz) were fabricated to provide a homogeneous nanoparticle coating on an injured arterial wall via the interactions between Gp1bα and von Willebrand factor (vWF), a ligand that is present on denuded endothelium. Second, transplanted endothelium cells bearing transcyclooctene (TCO) would be quickly immobilized on the surfaces of nanoparticles via TCOTz reactions.