Williamfreeman3911

Z Iurium Wiki

Verze z 11. 8. 2024, 15:24, kterou vytvořil Williamfreeman3911 (diskuse | příspěvky) (Založena nová stránka s textem „The outstanding performance of NiOOH/FeOOH-based oxygen evolution reaction (OER) catalysts is rationalized in terms of a bifunctional mechanism involving t…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The outstanding performance of NiOOH/FeOOH-based oxygen evolution reaction (OER) catalysts is rationalized in terms of a bifunctional mechanism involving two distinct active sites. In this mechanism, the OOHads reaction intermediate, which unfavorably affects the overall OER activity due to the linear scaling relationship, is replaced by O2 adsorbed at the active site on FeOOH and Hads adsorbed at the NiOOH substrate. Here, we use the computational hydrogen electrode method to assess promising models of both the FeOOH catalyst and the NiOOH hydrogen acceptor. These two materials are interfaced in various ways to evaluate their performance as bifunctional OER catalysts. In some cases, overpotentials as low as 0.16 V are found, supporting the bifunctional mechanism as a means to overcome the limitations imposed by linear scaling relationships.Vacuum ultraviolet (VUV) light at 118 nm has been shown to be a powerful tool to ionize molecules for various gas-phase chemical studies. A convenient table top source of 118 nm light can be produced by frequency tripling 355 nm light from a NdYAG laser in xenon gas. This process has a low efficiency, typically producing only nJ/pulse of VUV light. Simple models of the tripling process predict that the power of 118 nm light produced should increase quadratically with increasing xenon pressure. However, experimental 118 nm production has been observed to reach a maximum and then decrease to zero with increasing xenon pressure. Here, we describe the basic theory and experimental setup for producing 118 nm light and a new proposed model for the mechanism limiting the production based on pressure broadened absorption.Thermodiffusion in liquids (the Soret effect) has several unusual properties. In particular, transport can occur with or against a temperature gradient depending on the case. Numerous empirical correlations have been proposed with mixed success or range of applicability. Here, we show that physicochemical mechanics, derived from the Smoluchowski equation as a description of diffusive transport phenomena, is in accord with the experimental and simulated thermodiffusion data from colloidal beads and biomacromolecules to ionic solutions and ultracold fluid mixtures. It yields a simple formula for the Soret coefficient ST based on the reference molar entropy including non-ideality. Hydrodynamic and local non-equilibrium effects are discussed but not included as these are apparently not a major contribution for the wide range of solutes under the near-equilibrium experimental conditions considered here.In a previous work [Pan et al., Molecules 23, 2500 (2018)], a charge projection scheme was reported, where outer molecular mechanical (MM) charges [>10 Å from the quantum mechanical (QM) region] were projected onto the electrostatic potential (ESP) grid of the QM region to accurately and efficiently capture long-range electrostatics in ab initio QM/MM calculations. Here, a further simplification to the model is proposed, where the outer MM charges are projected onto inner MM atom positions (instead of ESP grid positions). This enables a representation of the long-range MM electrostatic potential via augmentary charges (AC) on inner MM atoms. Combined with the long-range electrostatic correction function from Cisneros et al. [J. Chem. Phys. 143, 044103 (2015)] to smoothly switch between inner and outer MM regions, this new QM/MM-AC electrostatic model yields accurate and continuous ab initio QM/MM electrostatic energies with a 10 Å cutoff between inner and outer MM regions. This model enables efficient QM/MM cluster calculations with a large number of MM atoms as well as QM/MM calculations with periodic boundary conditions.The p53 transcription factor is a key mediator in cellular responses to various stress signals including DNA repair, cell cycle arrest, and apoptosis. In this work, we employ landscape and flux theory to investigate underlying mechanisms of p53-regulated cell fate decisions. Based on a p53 regulatory network, we quantified the potential landscape and probabilistic flux for the p53 system. The landscape topography unifies and quantifies three cell fate states, including the limit cycle oscillations (representing cell cycle arrest), high p53 state (characterizing apoptosis), and low p53 state (characterizing the normal proliferative state). Landscape and flux results provide a quantitative explanation for the biphasic dynamics of the p53 system. In the oscillatory phase (first phase), the landscape attracts the system into the ring valley and flux drives the system cyclically moving, leading to cell cycle arrest. In the fate decision-making phase (second phase), the ring valley shape of the landscape provides an efficient way for cells to return to the normal proliferative state once DNA damage is repaired. If the damage is unrepairable with larger flux, the system may cross the barrier between two states and switch to the apoptotic state with a high p53 level. By landscape-flux decomposition, we revealed a trade-off between stability (guaranteed by landscape) and function (driven by flux) in cellular systems. Cells need to keep a balance between appropriate speed to repair DNA damage and appropriate stability to survive. This is further supported by flux landscape analysis showing that flux may provide the dynamical origin of phase transition in a non-equilibrium system by changing landscape topography.Exchange and correlation holes are unique quantum concepts for understanding the nature of electron interactions based on quantum conditional probabilities. Among those, the exact exchange hole is of special interest since it is derived rigorously from first principles without approximations and is often modeled by approximate exchange expressions of density functional theory. In this work, the algorithm for the computation of the spherically averaged exact exchange hole for a given reference point is developed and implemented for molecular orbitals in Gaussian basis functions. The formulas include a novel recursive relation for the spherical average of the Bessel function of the first kind and the asymptotic expressions when the exponential factor of the Bessel function becomes large. This new capability is used to explore the extent to which current popular model exchange holes resemble or differ from the exact exchange hole. Point-wise accuracy of the exchange holes for isolated atoms is important in local hybrid schemes, real-space models of static correlation, and others. We find in this vein that among the models tested here, only the BR89 exchange hole seems more or less suitable for that purpose, while better approximations are still very much on demand. Analyzing the deviations of model exchange holes from the exact exchange hole in molecules such as H2 and Cr2 upon bond stretching reveals new aspects of the left-right static correlation.We investigate the rich phase behavior of strongly confined semi-flexible (SFC) polymer-nanoparticle (NP) systems using the graphics processing unit accelerated Langevin dynamics simulation. Hard nanoparticles (HNP) that repel each other and ideal nanoparticles (INP) that do not interact with the same species are used as model additives to a strongly confined semiflexible polymer fluid. Both types of NPs exclude the monomer beads in the same way, but they have qualitatively different effects on the SFC isotropic-nematic (I-N) transition. For the total volume fraction ϕtot 0.32), polymers and NPs separate into layers along the slit height and the NPs form crystalline microdomains. In contrast, INP additives always promote inter-polymer alignment for low to moderate monomer volume fractions (ϕm). Furthermore, we found that INPs form a droplet-like fluid domain in dense nematic polymer systems.Strong coupling between various kinds of material excitations and optical modes has recently shown potential to modify chemical reaction rates in both excited and ground states. The ground-state modification in chemical reaction rates has usually been reported by coupling a vibrational mode of an organic molecule to the vacuum field of an external optical cavity, such as a planar Fabry-Pérot microcavity made of two metallic mirrors. However, using an external cavity to form polaritonic states might (i) limit the scope of possible applications of such systems and (ii) might be unnecessary. Here, we highlight the possibility of using optical modes sustained by materials themselves to self-couple to their own electronic or vibrational resonances. By tracing the roots of the corresponding dispersion relations in the complex frequency plane, we show that electronic and vibrational polaritons are natural eigenstates of bulk and nanostructured resonant materials that require no external cavity. Several concrete examples such as a slab of the excitonic material and a spherical water droplet in vacuum are shown to reach the regime of such cavity-free self-strong coupling. The abundance of cavity-free polaritons in simple and natural structures points at their relevance and potential practical importance for the emerging field of polaritonic chemistry, exciton transport, and modified material properties.Persistent motion of passive asymmetric bodies in non-equilibrium media has been experimentally observed in a variety of settings. However, fundamental constraints on the efficiency of such motion are not fully explored. Understanding such limits, and ways to circumvent them, is important for efficient utilization of energy stored in agitated surroundings for purposes of taxis and transport. Here, we examine such issues in the context of erratic movements of a passive asymmetric dumbbell driven by non-equilibrium noise. For uncorrelated (white) noise, we find a (non-Boltzmann) joint probability distribution for the velocity and orientation, which indicates that the dumbbell preferentially moves along its symmetry axis. The dumbbell thus behaves as an Ornstein-Uhlenbeck walker, a prototype of active matter. Exploring the efficiency of this active motion, we show that in the over-damped limit, the persistence length l of the dumbbell is bound from above by half its mean size, while the propulsion speed v∥ is proportional to its inverse size. The persistence length can be increased by exploiting inertial effects beyond the over-damped regime, but this improvement always comes at the price of smaller propulsion speeds. This limitation is explained by noting that the diffusivity of a dumbbell, related to the product v∥l, is always less than that of its components, thus severely constraining the usefulness of passive dumbbells as active particles.Strong coupling between surface plasmons and molecular excitons may lead to the formation of new hybrid states-polaritons-that are part light and part matter in character. A key signature of this strong coupling is an anti-crossing of the exciton and surface plasmon modes on a dispersion diagram. In a recent report on strong coupling between the plasmon modes of a small silver nano-rod and a molecular dye, it was shown that when the oscillator strength of the exciton is large enough, an additional anti-crossing feature may arise in the spectral region where the real part of the permittivity of the excitonic material is zero. However, the physics behind this double anti-crossing feature is still unclear. Here, we make use of extensive transfer matrix simulations to explore this phenomenon. We show that for low oscillator strengths of the excitonic resonance, there is a single anti-crossing arising from strong coupling between the surface plasmon and the excitonic resonance, which is associated with the formation of upper and lower plasmon-exciton polaritons.

Autoři článku: Williamfreeman3911 (Munro Linde)