Mcdonoughherskind1120
for ki-67). No correlation between IORT and Caspases activation was noted. In conclusion, after 12 Gy IORT, Bax was overexpressed in tumor and PIN cells. Pre-operative Ki-67 and p53 definition could be used in future studies to predict patients with worse pathological stage, while Bcl-2 activation after IORT might be a predictive factor for loco-regional failure.Root systems are dynamic and adaptable organs that play critical roles in plant development. However, how roots grow and accumulate biomass during plant life cycle and in relation to shoot growth phenology remains understudied. A comprehensive time-dependent root morphological analysis integrated with molecular signatures is then required to advance our understanding of root growth and development. Here we studied Brachypodium distachyon rooting process by monitoring root morphology, biomass production, and C/N ratios during developmental stages. To provide insight into gene regulation that accompanies root growth, we generated comprehensive transcript profiles of Brachypodium whole-root system at four developmental stages. Our data analysis revealed that multiple biological processes including trehalose metabolism and various families of transcription factors (TFs) were differentially expressed in root system during plant development. In particular, the AUX/IAA, ERFs, WRKY, NAC, and MADS TF family members were upregulated as plant entered the booting/heading stage, while ARFs and GRFs were downregulated suggesting these TF families as important factors involved in specific phases of rooting, and possibly in regulation of transition to plant reproductive stages. We identified several Brachypodium candidate root biomass-promoting genes and cis-regulatory elements for further functional validations and root growth improvements in grasses.It's a significant challenge for gas-water flow transition characteristics from experimental measurements in the study of multiphase flow systems. The limited penetrable visibility graph has been proved to be an efficient methodology for revealing nonlinear dynamical behaviors of time series. In order to uncovering gas-water flow transitions, gas-water flow experiment was carried out to obtain time series signals related to the transitions of three flow patterns. Then a novel multiscale limited penetrable visibility graph (MLPVG) is used to construct complex networks from many different experimental flow conditions. The multiscale network measures associated with node degree are employed to describe the topological features of the constructed MLPVG. The results show that the multiscale limited penetrable visibility graph can not only effectively characterize flow transition but also yields novel insights into the identification of gas-water flow patterns.Non-symmorphic chiral topological crystals host exotic multifold fermions, and their associated Fermi arcs helically wrap around and expand throughout the Brillouin zone between the high-symmetry center and surface-corner momenta. However, Fermi-arc splitting and realization of the theoretically proposed maximal Chern number rely heavily on the spin-orbit coupling (SOC) strength. In the present work, we investigate the topological states of a new chiral crystal, PtGa, which has the strongest SOC among all chiral crystals reported to date. With a comprehensive investigation using high-resolution angle-resolved photoemission spectroscopy, quantum-oscillation measurements, and state-of-the-art ab initio calculations, we report a giant SOC-induced splitting of both Fermi arcs and bulk states. Consequently, this study experimentally confirms the realization of a maximal Chern number equal to ±4 in multifold fermionic systems, thereby providing a platform to observe large-quantized photogalvanic currents in optical experiments.The introduction of farming had far-reaching impacts on health, social structure and demography. Although the spread of domesticated plants and animals has been extensively tracked, it is unclear how these nascent economies developed within different environmental and cultural settings. Using molecular and isotopic analysis of lipids from pottery, here we investigate the foods prepared by the earliest farming communities of the European Atlantic seaboard. Surprisingly, we find an absence of aquatic foods, including in ceramics from coastal sites, except in the Western Baltic where this tradition continued from indigenous ceramic using hunter-gatherer-fishers. The frequency of dairy products in pottery increased as farming was progressively introduced along a northerly latitudinal gradient. This finding implies that early farming communities needed time to adapt their economic practices before expanding into more northerly areas. Latitudinal differences in the scale of dairy production might also have influenced the evolution of adult lactase persistence across Europe.Human ACTG1 mutations are associated with high-frequency hearing loss, and patients with mutations in this gene are good candidates for electric acoustic stimulation. To better understand the genetic etiology of hearing loss cases, massively parallel DNA sequencing was performed on 7,048 unrelated Japanese hearing loss probands. Among 1,336 autosomal dominant hearing loss patients, we identified 15 probands (1.1%) with 13 potentially pathogenic ACTG1 variants. Six variants were novel and seven were previously reported. We collected and analyzed the detailed clinical features of these patients. The average progression rate of hearing deterioration in pure-tone average for four frequencies was 1.7 dB/year from 0 to 50 years age, and all individuals over 60 years of age had severe hearing loss. To better understand the underlying disease-causing mechanism, intracellular localization of wild-type and mutant gamma-actins were examined using the NIH/3T3 fibroblast cell line. ACTG1 mutants p.I34M p.M82I, p.K118M and p.I165V formed small aggregates while p.R37H, p.G48R, p.E241K and p.H275Y mutant gamma-actins were distributed in a similar manner to the WT. From these results, we believe that some part of the pathogenesis of ACTG1 mutations may be driven by the inability of defective gamma-actin to be polymerized into F-actin.Emotionally expressive non-verbal vocalizations can play a major role in human-robot interactions. Humans can assess the intensity and emotional valence of animal vocalizations based on simple acoustic features such as call length and fundamental frequency. These simple encoding rules are suggested to be general across terrestrial vertebrates. To test the degree of this generalizability, our aim was to synthesize a set of artificial sounds by systematically changing the call length and fundamental frequency, and examine how emotional valence and intensity is attributed to them by humans. Based on sine wave sounds, we generated sound samples in seven categories by increasing complexity via incorporating different characteristics of animal vocalizations. We used an online questionnaire to measure the perceived emotional valence and intensity of the sounds in a two-dimensional model of emotions. The results show that sounds with low fundamental frequency and shorter call lengths were considered to have a more positive valence, and samples with high fundamental frequency were rated as more intense across all categories, regardless of the sound complexity. We conclude that applying the basic rules of vocal emotion encoding can be a good starting point for the development of novel non-verbal vocalizations for artificial agents.To investigate (1) the effects of indoor incense burning upon cognition over 3 years; (2) the associations between indoor incense burning with the brain's structure and functional connectivity of the default mode network (DMN); and (3) the interactions between indoor incense burning and vascular disease markers upon cognitive functions. Community older adults without stroke or dementia were recruited (n = 515). Indoor incense use was self-reported as having burnt incense at home ≥ weekly basis over the past 5 years. Detailed neuropsychological battery was administered at baseline (n = 227) and the Montreal Cognitive Assessment at baseline and year 3 (n = 515). MRI structural measures and functional connectivity of the DMN were recorded at baseline. Demographic and vascular risk factors and levels of outdoor pollutants were treated as covariates. Indoor incense burning was associated with reduced performance across multiple cognitive domains at baseline and year 3 as well as decreased connectivity in the DMN. It interacted with diabetes mellitus, hyperlipidemia and white matter hyperintensities to predict poorer cognitive performance. Indoor incense burning is (1) associated with poorer cognitive performance over 3 years; (2) related to decreased brain connectivity; and (3) it interacts with vascular disease to predispose poor cognitive performance.Vav1 regulates Rac activation as a hematopoietic-specific Rho/Rac-family guanine nucleotide exchange factor. Rac is a subfamily of Rho GTPases that regulates the bone-resorbing capacity of osteoclasts (OCs). In this study, we show that hematopoietic-specific Rac2 and Vav1 play opposing roles by enhancing or attenuating OC differentiation, respectively. This was demonstrated by higher and lower bone density in the femurs from Rac2-deficient (Rac2-/-) and Vav1-deficient (Vav1-/-) mice, respectively, compared to the wild-type (WT) mice. Accordingly, Rac2-/- cells displayed low numbers of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells (41%) compared to WT cells, whereas, Vav1-/- cells showed high TRAP-positive cell numbers (150%), and the double-knockout Rac2-/-Vav1-/- mice nullified the effects on OC numbers achieved by the individual knockouts. These reciprocal roles of Rac2 and Vav1 in OC differentiation were confirmed by reduced and increased levels of OC-specific markers, such as TRAP, calcitonin receptor, cathepsin K, and DC-STAMP in the Rac2-/- and Vav1-/- OCs, respectively. Our findings of decrease and increase in actin ring formation and αvβ3 integrin-mediated adhesion in Rac2-/- and Vav1-/- mice, respectively, suggest that Vav1 and its downstream GTPase, Rac2, may counteract to fine-tune OC differentiation and bone resorption.1-methylcyclopropene (1-MCP) in an ethylene receptor antagonist that blocks ethylene perception and downstream ripening responses in climacteric fruit imparting a longer shelf life. However, in European pear, the application of 1-MCP irreversibly obstructs the onset of system 2 ethylene production resulting in perpetually unripe fruit with undesirable quality. Application of exogenous ethylene, carbon dioxide and treatment to high temperatures is not able to reverse the blockage in ripening. We recently reported that during cold conditioning, activation of alternative oxidase (AOX) occurs pre-climacterically. In this study, we report that activation of AOX via exposure of 1-MCP treated 'D'Anjou' pear fruit to glyoxylic acid triggers an accelerated ripening response. Time course physiological analysis revealed that ripening is evident from decreased fruit firmness and increased internal ethylene. Transcriptomic and functional enrichment analyses revealed genes and ontologies implicated in glyoxylic acid-mediated ripening, including AOX, TCA cycle, fatty acid metabolism, amino acid metabolism, organic acid metabolism, and ethylene-responsive pathways. These observations implicate the glyoxylate cycle as a biochemical hub linking multiple metabolic pathways to stimulate ripening through an alternate mechanism. The results provide information regarding how blockage caused by 1-MCP may be circumvented at the metabolic level, thus opening avenues for consistent ripening in pear and possibly other fruit.Immunotherapies, such as checkpoint blockade of programmed cell death protein-1 (PD-1), have resulted in unprecedented improvements in survival for patients with lung cancer. Nonetheless, not all patients benefit equally and many issues remain unresolved, including the mechanisms of action and the possible effector function of immune cells from non-lymphoid lineages. The purpose of this study was to investigate whether anti-PD-1 immunotherapy acts on malignant tumor cells through mechanisms beyond those related to T lymphocyte involvement. We used a murine patient-derived xenograft (PDX) model of early-stage non-small cell lung carcinoma (NSCLC) devoid of host lymphoid cells, and studied the tumor and immune non-lymphoid responses to immunotherapy with anti-PD-1 alone or in combination with standard chemotherapy (cisplatin). An antitumor effect was observed in animals that received anti-PD-1 treatment, alone or in combination with cisplatin, likely due to a mechanism independent of T lymphocytes. Indeed, anti-PD-1 treatment induced myeloid cell mobilization to the tumor concomitant with the production of exudates compatible with an acute inflammatory reaction mediated by murine polymorphonuclear leukocytes, specifically neutrophils. Thus, while keeping in mind that more research is needed to corroborate our findings, we report preliminary evidence for a previously undescribed immunotherapy mechanism in this model, suggesting a potential cytotoxic action of neutrophils as PD-1 inhibitor effector cells responsible for tumor regression by necrotic extension.Circoviruses, cycloviruses and other circular, replication-associated protein-encoding single stranded (CRESS) DNA viruses have been detected in a variety of animal taxa. In this study, cloacal swab samples (n = 90) were examined for CRESS DNA viruses from 31 wild bird species living at various aquatic sites in Hungary to identify possible reservoirs of viruses pathogenic to domestic poultry. A total of 30 (33.3%) specimens tested positive with pan-CRESS DNA virus specific PCR. Goose circovirus (GoCV), Duck associated cyclovirus 1 (DuACyV-1) and Garrulus glandarius associated circular virus 1 (GgaCV-1) were detected in nine, three and two different bird species, respectively. Selected specimens were subjected to whole genome sequencing. The obtained sequence data revealed conserved gene structure within the identified virus species and detected homologous (within GoCV) and possible heterologous recombination (within DuACyV-1) events. Results presented here provide new information on the genomic diversity and evolution of selected CRESS DNA viruses.Polycythemia vera (PV) is a clonal disorder resulting from neoplastic transformation of hematopoietic stem cells, while secondary polycythemia (SP) is a disease characterized by increased absolute red blood cell mass caused by stimulation of red blood cell production. Although the physiopathology of SP and PV is distinct, patients with these diseases share similar symptoms. The early differential diagnosis may improve the quality of life and decrease the disease burden in PV patients, as well as enable curative treatment for SP patients. PV is considered an oncoinflammatory disease because PV patients exhibit augmented levels of several pro-inflammatory cytokines. In this sense, we examined whether analysis of the cytokine production profile of SP and PV patients would help to distinguish them, despite their clinical similarities. Here we reported that SP patients exhibited decreased plasma levels of, IL-17A, IFN-γ, IL-12p70 and TNF-α when compared with PV patients, suggesting that analysis of the cytokine production profile may be an useful diagnostic biomarker to distinguish PV from SP patients.The previous performance of the English men's national football team in penalty shootouts has led to the widespread stereotype that English football players are particularly bad at scoring penalties. Research has proposed possible reasons behind this alleged "penalty curse". When looking at these reasons, the question arises if English football players per se have trouble scoring penalty kicks. Therefore, we analyzed the performance of a large sample of penalty takers during all World- and European Championships (N = 696) and, additionally, in some of the highest European leagues over a ten-year period (N = 4,708). The results reveal no significant differences between the success rates (on average between 71-79%, depending on the type of penalty kick and on the type of competition) of penalty takers from different nations. Therefore, we conclude that English players perform as well as players from other nations and that poor performance in penalties lay beyond the factor nationality.In our modern society, planning and problem solving are crucial for handling a wide range of situations. Investigation of the experienced mental workload connected to planning, strategy learning, and working memory capacity is of particular interest for adjusting conditions according to the mental state of the individual. In our study, we examined 21 subjects during a planning and a working memory task. We applied the method of Dual Frequency Head Maps (DFHM) from the electroencephalogram for capturing mental workload objectively. We evaluated the DFHM-workload index and performance data during the learning and main phase of the planning task and linked the results to subjects' working memory capacity. The DFHM-workload index indicated that subjects with higher working memory capacity experienced a gradual decrease in mental workload during strategy learning of the planning task. However, the effect of learning on mental workload disappeared during the main phase.The Deepwater Horizon incident in the Gulf of Mexico in 2010 released an unprecedented amount of petroleum hydrocarbons 1500 meters below the sea surface. Few studies have considered the influence of hydrostatic pressure on bacterial community development and activity during such spills. The goal of this study was to investigate the response of indigenous sediment microbial communities to the combination of increased pressure, hydrocarbons and dispersant. Deep-sea sediment samples collected from the northern Gulf of Mexico were incubated at atmospheric pressure (0.1 MPa) and at elevated pressure (10 MPa), with and without the addition of crude oil and dispersant. After incubations at 4 °C for 7 days, Colwellia and Psychrobium were highly abundant in all samples. Pressure differentially impacted members of the Alteromonadales. The influences of pressure on the composition of bacterial communities were most pronounced when dispersant was added to the incubations. Moritella and Thalassotalea were greatly stimulated by the addition of dispersant, suggesting their roles in dispersant biodegradation. However, Moritella was negatively impacted by increasing pressure. The presence of dispersant was shown to decrease the relative abundance of a known hydrocarbon degrader, Cycloclasticus, while increasing pressure increased its relative abundance. This study highlights the significant influence of pressure on the development of microbial communities in the presence of oil and dispersant during oil spills and related response strategies in the deep sea.Acute inflammation is a key feature of innate immunity that initiates clearance and repair in infected or damaged tissues. Alternatively, chronic inflammation is implicated in numerous disease processes. The contribution of neuroinflammation to the pathogenesis of neurological conditions, including infection, traumatic brain injury, and neurodegenerative diseases, has become increasingly evident. Potential drivers of such neuroinflammation include toll-like receptors (TLRs). TLRs confer a wide array of functions on different cell types in the central nervous system (CNS). Importantly, how TLR activation affects astrocyte functioning is unclear. In the present study, we examined the role of TLR2/4 signaling on various astrocyte functions (i.e., proliferation, pro-inflammatory mediator production, regulatory mechanisms, etc) by stimulating astrocytes with potent exogenous TLR2/4 agonist, bacterial lipopolysaccharide (LPS). Newborn astrocytes were derived from WT, Tnfα-/-, Il1α-/-/Il1β-/-, and Tlr2-/-/Tlr4-/- mice as well as Sprague Dawley rats for all in vitro studies. LPS activated mRNA expression of different pro-inflammatory cytokines and chemokines in time- and concentration-dependent manners, and upregulated the proliferation of astrocytes based on increased 3H-thymidine update. Following LPS-mediated TLR2/4 activation, TNF-α and IL-1β self-regulated and modulated the expression of pro-inflammatory cytokines and chemokines. Polyclonal antibodies against TNF-α suppressed TLR2/4-mediated upregulation of astrocyte proliferation, supporting an autocrine/paracrine role of TNF-α on astrocyte proliferation. Astrocytes perform classical innate immune functions, which contradict the current paradigm that microglia are the main immune effector cells of the CNS. TNF-α plays a pivotal role in the LPS-upregulated astrocyte activation and proliferation, supporting their critical roles in in CNS pathogenesis.The genus Tulasnella often forms mycorrhizas with orchids and has worldwide distribution. Species of this genus are associated with a wide range of orchids, including endangered hosts. Initially, species identification relied mostly on morphological features and few cultures were preserved for later phylogenetic comparisons. In this study, a total of 50 Tulasnella isolates were collected from their natural sites in Minas Gerais, Brazil, cultured, and subjected to a phylogenetic analysis based on alignments of sequences of the internal transcribed spacer (ITS) of the nuclear ribosomal DNA. Our results, based on phylogeny, integrated with nucleotide divergence and morphology, revealed the diversity of isolated Tulasnella species, which included four new species, namely, Tulasnella brigadeiroensis, Tulasnella hadrolaeliae, Tulasnella orchidis and Tulasnella zygopetali. The conservation of these species is important due to their association with endangered orchid hosts and endemic features in the Brazilian Atlantic Forest.Quantum optics largely relies on the fundamental concept that the diffraction and interference patterns of a multi-partite state are determined by its de Broglie wavelength. In this paper we show that this is still true for a mixed state with one sub-system being in a classical coherent state and one being in entangled state. We demonstrate the quantum-classical light discrimination using de Broglie wavelength for the states with all classical parameters being the same.Theoretical models are typically developed through a deductive process where a researcher formulates a system of dynamic equations from hypothesized mechanisms. Recent advances in algorithmic methods can discover dynamic models inductively-directly from data. Most previous research has tested these methods by rediscovering models from synthetic data generated by the already known model. Here we apply Sparse Identification of Nonlinear Dynamics (SINDy) to discover mechanistic equations for disease dynamics from case notification data for measles, chickenpox, and rubella. The discovered models provide a good qualitative fit to the observed dynamics for all three diseases, However, the SINDy chickenpox model appears to overfit the empirical data, and recovering qualitatively correct rubella dynamics requires using power spectral density in the goodness-of-fit criterion. When SINDy uses a library of second-order functions, the discovered models tend to include mass action incidence and a seasonally varying transmission rate-a common feature of existing epidemiological models for childhood infectious diseases. We also find that the SINDy measles model is capable of out-of-sample prediction of a dynamical regime shift in measles case notification data. These results demonstrate the potential for algorithmic model discovery to enrich scientific understanding by providing a complementary approach to developing theoretical models.Improving extinction learning has the potential to optimize psychotherapy for persistent anxiety-related disorders. Recent findings show that extinction learning can be improved with a cognitively demanding eye-movement intervention. It is, however, unclear whether [1] any cognitively-demanding task can enhance extinction, or whether it is limited to eye movements, and [2] the effectiveness of such an intervention can be enhanced by increasing cognitive load. Participants (n = 102, n = 75 included in the final sample) completed a Pavlovian threat conditioning paradigm across two days. One group underwent standard extinction (Control), a second group underwent extinction paired with a 1-back working memory task (Low-Load), and a third group underwent extinction paired with a 2-back working memory task (High-Load). We found that the conditioned response during extinction was reduced for both the Low-Load and the High-Load groups compared to the Control group. This reduction persisted during recovery the following day when no working memory task was executed. Finally, we found that within the High-Load group, participants with lower accuracy scores on the 2-back task (i.e., for who the task was more difficult) had a stronger reduction in the conditioned response. We did not observe this relationship within the Low-Load group. Our findings suggest that cognitive load induced by a working memory intervention embedded during extinction reduces persistent threat responses.We have recently identified and characterized two pseudogenes (HMGA1P6 and HMGA1P7) of the HMGA1 gene, which has a critical role in malignant cell transformation and cancer progression. HMGA1P6 and HMGAP17 act as microRNA decoy for HMGA1 and other cancer-related genes upregulating their protein levels. We have previously shown that they are upregulated in several human carcinomas, and their expression positively correlates with a poor prognosis and an advanced cancer stage. To evaluate in vivo oncogenic activity of HMGA1 pseudogenes, we have generated a HMGA1P7 transgenic mouse line overexpressing this pseudogene. By a mean age of 12 months, about 50% of the transgenic mice developed splenomegaly and accumulation of lymphoid cells in several body compartments. For these mice FACS and immunohistochemical analyses suggested the diagnosis of B-cell lymphoma that was further supported by clonality analyses and RNA expression profile of the pathological tissues of the HMGA1P7 transgenic tissues. Therefore, these results clearly demonstrate the oncogenic activity of HMGA1 pseudogenes in vivo.Presurgical investigations for categorizing focal patterns are crucial, leading to localization and surgical removal of the epileptic focus. This paper presents a machine learning approach using information theoretic features extracted from high-frequency subbands to detect the epileptic focus from interictal intracranial electroencephalogram (iEEG). It is known that high-frequency subbands (>80 Hz) include important biomarkers such as high-frequency oscillations (HFOs) for identifying epileptic focus commonly referred to as the seizure onset zone (SOZ). In this analysis, the multi-channel interictal iEEG signals were splitted into segments and each segment was decomposed into multiple high-frequency subbands. The different types of entropy were calculated for each of the subbands and the sparse linear discriminant analysis (sLDA) was applied to select the prominent entropy features. Due to the imbalance of SOZ and non-SOZ channels in iEEG data, the use of machine learning techniques is always tricky. To deal with the imbalanced learning problem, an adaptive synthetic oversampling approach (ADASYN) with radial basis function kernel-based SVM was used to detect the focal segments. Finally, the epileptic focus was identified based on detection of focal segments on SOZ and non-SOZ channels. Eight patients were examined to observe the efficiency of the automatic detector. The experimental results and statistical tests indicate that the proposed automatic detector can identify the epileptic focus accurately and efficiently.Sea surface temperature (SST) is a fundamental driver of tropical weather systems such as monsoon rainfall and tropical cyclones. However, understanding of the factors that control SST variability is lacking, especially during the monsoons when in situ observations are sparse. Here we use a ground-breaking observational approach to determine the controls on the SST variability in the southern Bay of Bengal. We achieve this through the first full closure of the ocean mixed layer energy budget derived entirely from in situ observations during the Bay of Bengal Boundary Layer Experiment (BoBBLE). Locally measured horizontal advection and entrainment contribute more significantly than expected to SST evolution and thus oceanic variability during the observation period. These processes are poorly resolved by state-of-the-art climate models, which may contribute to poor representation of monsoon rainfall variability. The novel techniques presented here provide a blueprint for future observational experiments to quantify the mixed layer heat budget on longer time scales and to evaluate these processes in models.Balloon catheter endothelial denudation in New Zealand white rabbits fed high cholesterol diet is a validated atherosclerosis model. Well-characterized in terms of atherosclerosis induction and progression, the metabolic changes associated with the atherosclerosis progression remain indeterminate. Non-targeted metabolomics permits to develop such elucidation and allows to evaluate the metabolic consequences of colchicine treatment, an anti-inflammatory drug that could revert these changes. 16 rabbits underwent 18 weeks of atherosclerosis induction by diet and aortic denudation. Thereafter animals were randomly assigned to colchicine treatment or placebo for 18 weeks while on diet. Plasma samples were obtained before randomization and at 36 weeks. Multiplatform (GC/MS, CE/MS, RP-HPLC/MS) metabolomics was applied. Plasma fingerprints were pre-processed, and the resulting matrixes analyzed to unveil differentially expressed features. Different chemical annotation strategies were accomplished for those significant features. We found metabolites associated with either atherosclerosis progression, or colchicine treatment, or both. Atherosclerosis was profoundly associated with an increase in circulating bile acids. Most of the changes associated with sterol metabolism could not be reverted by colchicine treatment. However, the variations in lysine, tryptophan and cysteine metabolism among others, have shown new potential mechanisms of action of the drug, also related to atherosclerosis progression, but not previously described.Despite the efforts of a number of research groups worldwide, we still have a poor understanding of the chemical nature of the fish kairomones which induce defensive morphology, life history and behavior in their planktonic prey. Bile excreted by foraging fish play a crucial role in their signaling systems. Using high-performance liquid chromatography (HPLC), we revealed the presence of primary and secondary bile acids and bile salts in fish-conditioned water, similar as in carp bile. Upon exposure to either fish bile or commercially acquired bile salts, Daphnia demonstrated similar changes in life history and behavior as when exposed to fish kairomones. The synergic effect of the injured Daphnia alarm substance with fish bile on Daphnia life history is similar to the adaptive effect of the same alarm substance combined with fish kairomones. This strongly supports the view that fish bile or selected bile acids/salts may be responsible for the biological activity of kairomones.An amendment to this paper has been published and can be accessed via a link at the top of the paper.Our existence in the Universe resulted from a rare combination of circumstances. The same must hold for any highly developed extraterrestrial civilisation, and if they have ever existed in the Milky Way, they would likely be scattered over large distances in space and time. However, all technologically advanced species must be aware of the unique property of the galactic centre it hosts Sagittarius A* (Sgr A*), the closest supermassive black hole to anyone in the Galaxy. A civilisation with sufficient technical know-how may have placed material in orbit around Sgr A* for research, energy extraction, and communication purposes. In either case, its orbital motion will necessarily be a source of gravitational waves. We show that a Jupiter-mass probe on the retrograde innermost stable circular orbit around Sgr A* emits, depending on the black hole spin, at a frequency of fGW = 0.63-1.07 mHz and with a power of PGW = 2.7 × 1036-2.0 × 1037 erg/s. We discuss that the energy output of a single star is sufficient to stabilise the location of an orbiting probe for a billion years against gravitational wave induced orbital decay. Placing and sustaining a device near Sgr A* is therefore astrophysically possible. Such a probe will emit an unambiguously artificial continuous gravitational wave signal that is observable with LISA-type detectors.One of the most significant issues for superconductivity is clarifying the momentum-dependent superconducting gap Δ([Formula see text]), which is closely related to the pairing mechanism. To elucidate the gap structure, it is essential to investigate Δ([Formula see text]) in as many different physical quantities as possible and to crosscheck the results obtained in different methods with each other. In this paper, we report a combinatorial investigation of the superfluid density and the flux-flow resistivity of iron-pnictide superconductors; LiFeAs and BaFe2(As1-xPx)2 (x = 0.3, 0.45). We evaluated Δ([Formula see text]) by fitting these two-independent quantities with a two-band model simultaneously. The obtained Δ([Formula see text]) are consistent with the results observed in angle-resolved photoemission spectroscopy (ARPES) and scanning-tunneling spectroscopy (STS) studies. We believe our approach is a powerful method for investigating Δ([Formula see text]) because it does not require a sample with clean surface unlike ARPES and STS experiments, or a rotational magnetic-field system for direct measurements of the angular dependence of thermodynamic quantities.The aim of this study was to investigate the long-term trends of human immunodeficiency virus (HIV) mortality in China and its associations with age, period and birth cohort. We used HIV mortality data obtained from the Global Burden of Disease Study (GBD) 2016 and analysed the data with an age-period-cohort framework. Age effects indicate different risks of different outcomes at specific periods in life; period effects reflect population- wide exposure at a circumscribed point in time; and cohort effects generally reflect differences in risk across birth cohorts.Our results showed that the overall annual percentage change (net drift) of HIV mortality was 11.3% (95% CI 11.0% to 11.6%) for males and 7.2% (95% CI 7.0% to 7.5%) for females, and the annual percentage changes in each age group (local drift) were greater than 5% (p less then 0.01 for all) in both sexes. In the same birth cohort, the risk of death from HIV increased with age in both sexes after controlling for period effects, and the risk for each five-year period was 1.98 for males and 1.57 for females compared to their previous life stage. Compared to the period of 2002-2006, the relative risk (RR) of HIV mortality in 2012-2016 increased by 56.1% in males and 3.7% in females, and compared to the 1955-1959 birth cohort, the cohort RRs increased markedly, by 82.9 times in males and 34.8 times in females. Considering the rapidly increasing risk of HIV mortality, Chinese policymakers should take immediate measures to target the key age group of 15-44 years in both sexes.Developing autonomous self-healing materials for applications in harsh conditions is challenging because the reconstruction of interaction in material for self-healing will experience significant resistance and fail. Herein, a universally self-healing and highly stretchable supramolecular elastomer is designed by synergistically incorporating multi-strength H-bonds and disulfide metathesis in polydimethylsiloxane polymers. The resultant elastomer exhibits high stretchability for both unnotched (14000%) and notched (1300%) samples. It achieves fast autonomous self-healing under universal conditions, including at room temperature (10 min for healing), ultralow temperature (-40 °C), underwater (93% healing efficiency), supercooled high-concentrated saltwater (30% NaCl solution at -10 °C, 89% efficiency), and strong acid/alkali environment (pH = 0 or 14, 88% or 84% efficiency). These properties are attributable to synergistic interaction of the dynamic strong and weak H-bonds and stronger disulfide bonds. A self-healing and stretchable conducting device built with the developed elastomer is demonstrated, thereby providing a direction for future e-skin applications.The endothelial cell adhesion molecule E-selectin is a key component of the bone marrow hematopoietic stem cell (HSC) vascular niche regulating balance between HSC self-renewal and commitment. We now report in contrast, E-selectin directly triggers signaling pathways that promote malignant cell survival and regeneration. Using acute myeloid leukemia (AML) mouse models, we show AML blasts release inflammatory mediators that upregulate endothelial niche E-selectin expression. Alterations in cell-surface glycosylation associated with oncogenesis enhances AML blast binding to E-selectin and enable promotion of pro-survival signaling through AKT/NF-κB pathways. In vivo AML blasts with highest E-selectin binding potential are 12-fold more likely to survive chemotherapy and main contributors to disease relapse. Absence (in Sele-/- hosts) or therapeutic blockade of E-selectin using small molecule mimetic GMI-1271/Uproleselan effectively inhibits this niche-mediated pro-survival signaling, dampens AML blast regeneration, and strongly synergizes with chemotherapy, doubling the duration of mouse survival over chemotherapy alone, whilst protecting endogenous HSC.Two-dimensional layered perovskites are attracting increasing attention as more robust analogues to the conventional three-dimensional metal-halide perovskites for both light harvesting and light emitting applications. However, the impact of the reduced dimensionality on the optoelectronic properties remains unclear, particularly regarding the spatial dynamics of the excitonic excited state within the two-dimensional plane. Here, we present direct measurements of exciton transport in single-crystalline layered perovskites. Using transient photoluminescence microscopy, we show that excitons undergo an initial fast diffusion through the crystalline plane, followed by a slower subdiffusive regime as excitons get trapped. Interestingly, the early intrinsic diffusivity depends sensitively on the choice of organic spacer. A clear correlation between lattice stiffness and diffusivity is found, suggesting exciton-phonon interactions to be dominant in the spatial dynamics of the excitons in perovskites, consistent with the formation of exciton-polarons. Our findings provide a clear design strategy to optimize exciton transport in these systems.The predicted 80 open reading frames (ORFs) of herpes simplex virus 1 (HSV-1) have been intensively studied for decades. Here, we unravel the complete viral transcriptome and translatome during lytic infection with base-pair resolution by computational integration of multi-omics data. We identify a total of 201 transcripts and 284 ORFs including all known and 46 novel large ORFs. This includes a so far unknown ORF in the locus deleted in the FDA-approved oncolytic virus Imlygic. Multiple transcript isoforms expressed from individual gene loci explain translation of the vast majority of ORFs as well as N-terminal extensions (NTEs) and truncations. We show that NTEs with non-canonical start codons govern the subcellular protein localization and packaging of key viral regulators and structural proteins. We extend the current nomenclature to include all viral gene products and provide a genome browser that visualizes all the obtained data from whole genome to single-nucleotide resolution.Pancreatic cancer (PC) is a malignant tumor with a poor prognosis and high mortality. However, the biological role of miR-548t-5p in PC has not been reported. In this study, we found that miR-548t-5p expression was significantly decreased in PC tissues compared with adjacent tissues, and that low miR-548t-5p expression was associated with malignant PC behavior. In addition, high miR-548t-5p expression inhibited the proliferation, migration, and invasion of PC cell lines. Regarding the molecular mechanism, the luciferase reporter gene, chromatin immunoprecipitation (ChIP), and functional recovery assays revealed that YY1 binds to the miR-548t-5p promoter and positively regulates the expression and function of miR-548t-5p. miR-548t-5p also directly regulates CXCL11 to inhibit its expression. A high level of CXCL11 was associated with worse Tumor Node Metastasis (TNM) staging in patients with PC, enhancing proliferation and metastasis in PC cells. Our study shows that the YY1/miR-548t-5p/CXCL11 axis plays an important role in PC and provides a new potential candidate for the treatment of PC.Direct reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) requires a resetting of the epigenome in order to facilitate a cell fate transition. Previous studies have shown that epigenetic modifying enzymes play a central role in controlling induced pluripotency and the generation of iPSC. Here we show that RNF40, a histone H2B lysine 120 E3 ubiquitin-protein ligase, is specifically required for early reprogramming during induced pluripotency. Loss of RNF40-mediated H2B monoubiquitination (H2Bub1) impaired early gene activation in reprogramming. We further show that RNF40 contributes to tissue-specific gene suppression via indirect effects by controlling the expression of the polycomb repressive complex-2 histone methyltransferase component EZH2, as well as through more direct effects by promoting the resolution of H3K4me3/H3K27me3 bivalency on H2Bub1-occupied pluripotency genes. Thus, we identify RNF40 as a central epigenetic mediator of cell state transition with distinct functions in resetting somatic cell state to pluripotency.Non-traumatic osteonecrosis of the femoral head (ONFH) is clinically a devastating and progressive disease without an effective treatment. Mesenchymal stem cells (MSCs) transplantation has been used to treat ONFH in early stage, but the failure rate of this therapy is high due to the reduced osteogenic differentiation and migration of the transplanted MSCs related with pathological bone tissues. However, the mechanism responsible for this decrease is still unclear. Therefore, we assume that the implanted MSCs might be influenced by signals delivered from pathological bone tissue, where the exosomes might play a critical role in this delivery. This study showed that exosomes from ONFH bone tissues (ONFH-exos) were able to induce GC-induced ONFH-like damage, in vivo and impair osteogenic differentiation and migration of MSCs, in vitro. Then, we analyzed the differentially expressed proteins (DEPs) in ONFH-exos using proteomic technology and identified 842 differentially expressed proteins (DEPs). On the basis orapy in ONFH.AIMS Vitamin E (Vit-E) may preferentially improve cardiovascular risk in haptoglobin 2-2 (Hp2-2) genotype diabetes individuals. We studied the impact of Vit-E supplementation on vascular function in diabetes individuals stratified by haptoglobin genotype in Singapore. METHODS In this 24-week, double blind, placebo-controlled RCT, we recruited 187 subjects (101 Hp2-2, 86 non-Hp2-2). INTERVENTION alpha-tocopherol-400 IU. PRIMARY OUTCOME Change in EndoPAT-derived reactive-hyperaemia index (RHI) and augmentation index (AIx); Secondary Outcomes Pulse-Wave velocity (Sphygmocor-PWV), carotid intima media thickness (CIMT), inflammation (hsCRP), derivatives of reactive-oxygen metabolites (dROMs), biological antioxidant-potential (BAPs), HbA1c, LDL-C, HDL-C and oxidised LDL-C (ox-LDL). RESULTS Overall, with Vit-E supplementation no significant change in RHI, PWV, CIMT, hsCRP, dROMS, BAPs, HDL-C and HbA1c was observed (p > 0.05); an increase in LDL-C with concomitant decrease in ox-LDL, and incidentally increase in eGFR was observed (p 119 mg/dl was observed. Future studies should consider personalisation based on baseline Hp concentrations in patients with T2DM rather than just Hp2-2 genotype to evaluate impact on the detailed lipid pathways, cardiac and renal physiology. The impact of ethnic differences needs to be explored in greater details.Visible-light and infrared-light persistent phosphors are extensively studied and are being used as self-sustained glowing tags in darkness. In contrast, persistent phosphors for higher-energy, solar-blind ultraviolet-C wavelengths (200-280 nm) are lacking. Also, persistent tags working in bright environments are not available. Here we report five types of Pr3+-doped silicates (melilite, cyclosilicate, silicate garnet, oxyorthosilicate, and orthosilicate) ultraviolet-C persistent phosphors that can act as self-sustained glowing tags in bright environments. These ultraviolet-C persistent phosphors can be effectively charged by a standard 254 nm lamp and emit intense, long-lasting afterglow at 265-270 nm, which can be clearly monitored and imaged by a corona camera in daylight and room light. Besides thermal-stimulation, in bright environments, photo-stimulation also contributes to the afterglow emission and its contribution can be dominant when ambient light is strong. This study expands persistent luminescence research to the ultraviolet-C wavelengths and brings persistent luminescence applications to light.Leukemic stem cells (LSCs) and hematopoietic stem cells (HSCs) are both dependent on the hypoxic bone marrow (BM) microenvironment (also known as the BM niche). There is always fierce competition between the two types of cells, and the former exhibits a greater competitive advantage than the latter via multiple mechanisms. Under hypoxia, the dynamic balance between the generation and clearing of intracellular reactive oxygen species (ROS) is conducive to maintaining a quiescent state of cells. Quiescent LSCs can reside well in the BM niche, avoiding attack by chemotherapeutic agents, which is the cause of chemotherapeutic resistance and relapse in leukemia. HSCs acquire energy mainly through anaerobic glycolysis, whereas LSCs achieve energy metabolism largely through mitochondrial oxidative respiration. Mitochondria are the primary site of ROS generation. Thus, in theory, mitochondria-mediated respiration will cause an increase in ROS generation in LSCs and a higher intracellular oxidative stress level. The sensitivity of the cells to pro-oxidant drugs increases as well, which allows for the selective clearing of LSCs by pro-oxidative therapy. However, HSCs are also highly sensitive to changes in ROS levels, and the toxic effects of pro-oxidant drugs on HSCs poses a major challenge to pro-oxidative therapy in leukemia. Given the above facts, we reviewed studies on the oxidative resistance of LSCs and the oxidative damage to HSCs under pro-oxidative therapy. An in-depth investigation into the oxidative stress status and regulatory mechanisms of LSCs and HSCs in hypoxic environments will promote our understanding of the survival strategy employed by LSCs and the mechanism of the oxidative damage to HSCs in the BM niche, thus facilitating individualized treatment of leukemia patients and helping eliminate LSCs without disturbing normal hematopoietic cells.Hypoxia limits the survival and function of neurons in the development of Alzheimer's diseases. Exosome-dependent intercellular communication is an emerging signaling mechanism involved in tissue repair and regeneration; however, the effect and underlying mechanism of mesenchymal stem cell-derived exosomes in regulating neuronal cell apoptosis have not been determined. Here, we showed that the establishment of an AD cell model was accompanied by increased HIF-1α expression and cell apoptosis, impaired cell migration, and decreased miR-223. MSC-derived exosomes were internalized by the AD cell coculture model in a time-dependent manner, resulting in reduced cell apoptosis, enhanced cell migration and increased miR-223, and these effects were reversed by KC7F2, a hypoxic inhibitor. Furthermore, MSC-derived exosomal miR-223 inhibited the apoptosis of neurons in vitro by targeting PTEN, thus activating the PI3K/Akt pathway. In addition, exosomes isolated from the serum of AD patients promoted cell apoptosis. In short, our study showed that MSC-derived exosomal miR-223 protected neuronal cells from apoptosis through the PTEN-PI3K/Akt pathway and provided a potential therapeutic approach for AD.Current approaches for nanomaterial delivery in plants are unable to target specific subcellular compartments with high precision, limiting our ability to engineer plant function. We demonstrate a nanoscale platform that targets and delivers nanomaterials with biochemicals to plant photosynthetic organelles (chloroplasts) using a guiding peptide recognition motif. Quantum dot (QD) fluorescence emission in a low background window allows confocal microscopy imaging and quantitative detection by elemental analysis in plant cells and organelles. QD functionalization with β-cyclodextrin molecular baskets enables loading and delivery of diverse chemicals, and nanoparticle coating with a rationally designed and conserved guiding peptide targets their delivery to chloroplasts. Peptide biorecognition provides high delivery efficiency and specificity of QD with chemical cargoes to chloroplasts in plant cells in vivo (74.6 ± 10.8%) and more specific tunable changes of chloroplast redox function than chemicals alone. Targeted delivery of nanomaterials with chemical cargoes guided by biorecognition motifs has a broad range of nanotechnology applications in plant biology and bioengineering, nanoparticle-plant interactions, and nano-enabled agriculture.ZNF750 is one novel significantly mutated gene identified in esophageal squamous cell carcinoma (ESCC) using next-generation sequencing. However, its clinically relevant and potential mechanisms have remained elusive. Using genomic sequencing of 612 ESCC patients, we analyzed the associations of ZNF750 mutations with clinicopathologic features and its prognostic value. We further investigated the function and underlying mechanism of ZNF750 in angiogenesis. The results showed ZNF750 mutations/deletions are significantly associated with malignant progression and poor prognosis of ESCC patients. Decreased ZNF750 in ESCC cells induces enhanced angiogenesis of human umbilical vein endothelial cells (HUVECs) and human arterial endothelial cells (HAECs), and the effect may be indirectly mediated by FOXC2. RNA-seq and ChIP shows lncRNA DANCR is a direct downstream target of ZNF750. Furtherly, knockdown ZNF750 evokes DANCR expression, which prevents miR-4707-3p to interact with FOXC2 as a microRNA sponge in a ceRNA manner, leading to enhanced FOXC2 signaling and angiogenesis.