Kokholmmccullough9571
under task or social conditions would reveal more information about behavioral dynamics and variability.
Our automated pipeline for deep phenotyping successfully captures model-specific deviations in adaptation and movement as well as differences in the detailed structure of behavioral dynamics. The reported deficits indicate that deep phenotyping constitutes a robust set of ASD symptoms that may be considered for implementation in clinical settings as quantitative diagnosis criteria.
Our automated pipeline for deep phenotyping successfully captures model-specific deviations in adaptation and movement as well as differences in the detailed structure of behavioral dynamics. The reported deficits indicate that deep phenotyping constitutes a robust set of ASD symptoms that may be considered for implementation in clinical settings as quantitative diagnosis criteria.
Acute kidney injury (AKI) causes abrupt deterioration in kidney function that disrupts metabolic, electrolyte and fluid homeostasis. Although the prevalence of AKI is steadily increasing, no definitive treatment options are available, leading to severe morbidity and mortality. We evaluated the role of uterine-derived multipotent stem cells in kidney regeneration after ischemic AKI.
Female C57BL/6J mice were hysterectomized and subsequently subject to AKI by either unilateral or bilateral renal ischemia-reperfusion injury. Uterine-derived cells (UDCs), containing a population of uterine stem cells, were isolated from the uteri of female transgenic DsRed mice and injected intravenously to AKI mice. Engraftment of DsRed cells was analyzed by flow cytometry while serum creatinine levels were determined colorimetrically. Expression of UDC markers and cytokine markers were analyzed by immunohistochemical and qRT-PCR methods, respectively. The Kaplan-Meier method was used to analyze survival time while unpaired up.
UDCs engrafted injured kidneys, contributed to proximal tubule and vascular regeneration, improved kidney function and increased survival in AKI mice. UDC administration is a promising new therapy for AKI. Endogenous uterine stem cells likely also preserve kidney function, suggesting a novel interaction between the uterus and kidney. We suggest that hysterectomy may have a detrimental effect on response to renal injury.
UDCs engrafted injured kidneys, contributed to proximal tubule and vascular regeneration, improved kidney function and increased survival in AKI mice. UDC administration is a promising new therapy for AKI. Endogenous uterine stem cells likely also preserve kidney function, suggesting a novel interaction between the uterus and kidney. We suggest that hysterectomy may have a detrimental effect on response to renal injury.
The liver plays an important role in various metabolic processes, including protein synthesis, lipid and drug metabolisms and detoxifications. Primary culture of hepatocytes is used for the understanding of liver physiology as well as for the drug development. Hepatocytes are, however, hardly expandable in vitro making it difficult to secure large numbers of cells from one donor. Alternatively, systems using animal models and hepatocellular carcinoma cells have been established, but interspecies differences, variation between human cell sources and limited hepatic functions are among the challenges faced when using these models. Therefore, there is still a need for a highly stable method to purify human hepatocytes with functional sufficiency. In this study, we aimed to establish an in vitro long-term culture system that enables stable proliferation and maintenance of human hepatocytes to ensure a constant supply.
We first established a growth culture system for hepatocytes derived from patients with drugatocyte proliferation and is an effective method for generating a stable supply of hepatocytes for drug discovery research at a significant cost reduction.
These results show that this simple culture system with usage of the cytocidal antibiotics enables efficient hepatocyte proliferation and is an effective method for generating a stable supply of hepatocytes for drug discovery research at a significant cost reduction.Acute myeloid leukemia (AML) patients suffer dismal prognosis upon treatment resistance. To study functional heterogeneity of resistance, we generated serially transplantable patient-derived xenograft (PDX) models from one patient with AML and twelve clones thereof, each derived from a single stem cell, as proven by genetic barcoding. Transcriptome and exome sequencing segregated clones according to their origin from relapse one or two. Undetectable for sequencing, multiplex fluorochrome-guided competitive in vivo treatment trials identified a subset of relapse two clones as uniquely resistant to cytarabine treatment. Transcriptional and proteomic profiles obtained from resistant PDX clones and refractory AML patients defined a 16-gene score that was predictive of clinical outcome in a large independent patient cohort. Thus, we identified novel genes related to cytarabine resistance and provide proof of concept that intra-tumor heterogeneity reflects inter-tumor heterogeneity in AML.
The short-term safety and efficacy of stromal vascular fraction (SVF) in treating knee osteoarthritis (KOA) have been extensively studied but the mid-term and long-term prognoses remain unknown.
126 KOA patients were recruited and randomly assigned to SVF group and hyaluronic acid (HA) group (control group). The scores of visual analogue scale (VAS) and the Western Ontario and McMaster University Osteoarthritis Index (WOMAC) were assessed and compared between the two groups 1, 2, 3, and 5years after treatment. The endpoint was defined as surgeries related to KOA or clinical scores exceeding the patient acceptable symptom state (PASS).
The VAS and WOMAC scores in the SVF group were significantly better than those in the HA group during the 5-year follow-up after treatment. The average responsive time to SVF treatment (61.52months) was significantly longer than HA treatment (30.37months). The adjusted Cox proportional hazards model showed that bone marrow lesion (BML) severity, body mass index (BMI) and treatment were independent risk factors and that the use of SVF reduced the risk of clinical failure by 2.602 times. The cartilage volume was reduced in both the SVF and control groups at 5years but reduced less in the SVF group.
Up to 5years after SVF treatment, acceptable clinical state was present for approximately 60% of patients. BML severity and BMI were independent predictors of the prognosis.
This study was retrospectively registered at Chinses Clinical Trial Registry with identifier ChiCTR2100052818 and was approved by ethics committee of the First Affiliated Hospital of Zhejiang Chinese Medical University, number 2013-X-063.
This study was retrospectively registered at Chinses Clinical Trial Registry with identifier ChiCTR2100052818 and was approved by ethics committee of the First Affiliated Hospital of Zhejiang Chinese Medical University, number 2013-X-063.
Ticks are important vectors of various pathogenic protozoa, bacteria and viruses that cause serious and life-threatening illnesses in humans and animals worldwide. Estimating tick-borne pathogen prevalence in tick populations is necessary to delineate how geographical differences, environmental variability and host factors influence pathogen prevalence and transmission. This study identified ticks and tick-borne pathogens in samples collected from June 2016 to December 2017 at seven sites within the Coastal, Sudan and Guinea savanna ecological zones of Ghana.
A total of 2016 ticks were collected from domestic animals including cattle, goats and dogs. Ticks were morphologically identified and analysed for pathogens such as Crimean-Congo haemorrhagic fever virus (CCHFV), Alkhurma haemorrhagic fever virus (AHFV), Rickettsia spp. and Coxiella burnetii using polymerase chain reaction assays (PCR) and sequence analysis.
Seven species were identified, with Amblyomma variegatum (60%) most frequently found, follburnetii, compared to other tick-borne pathogens in Ghana.Taenia multiceps is a taeniid cestode that inhabits the small intestines of both wild and domestic carnivores. The larval stage, Coenurus cerebralis, is typically found in the central nervous system (CNS) of a wide range of livestock and, to a lesser extent, in the extra-cerebral tissues of sheep and goats. This review covers all aspects of the life cycle of T. multiceps and its epidemiology, molecular characterization, pathogenesis, diagnosis, therapy, control and zoonotic potential. Coenurosis caused by the larval stage of T. multiceps has a worldwide distribution and is often fatal in intermediate hosts, which can result in substantial economic losses in livestock farming. Molecular characterization using the mitochondrial genes cytochrome c oxidase subunit 1 and nicotinamide adenine dinucleotide dehydrogenase subunit 1 of different T. multiceps populations has revealed significant genetic variation and the presence of three major haplotypes. The disease mostly affects young sheep and is referred to as eitasures, such as anthelmintic treatment of dogs and the proper disposal of intermediate host carcasses. The parasite is also zoonotic, and cases of coenurosis have been reported in humans with coenuri located in the brain, spinal cord and eyes.
Mitochondrial fusion and fission proteins have been nominated as druggable targets in cancer. Whether their inhibition is efficacious in triple negative breast cancer (TNBC) that almost invariably develops chemoresistance is unknown.
We used a combination of bioinformatics analyses of cancer genomic databases, genetic and pharmacological Optic Atrophy 1 (OPA1) inhibition, mitochondrial function and morphology measurements, micro-RNA (miRNA) profiling and formal epistatic analyses to address the role of OPA1 in TNBC proliferation, migration, and invasion in vitro and in vivo.
We identified a signature of OPA1 upregulation in breast cancer that correlates with worse prognosis. Accordingly, OPA1 inhibition could reduce breast cancer cells proliferation, migration, and invasion in vitro and in vivo. Mechanistically, while OPA1 silencing did not reduce mitochondrial respiration, it increased levels of miRNAs of the 148/152 family known to inhibit tumor growth and invasiveness. Indeed, these miRNAs were epistatic to OPA1 in the regulation of TNBC cells growth and invasiveness.
Our data show that targeted inhibition of the mitochondrial fusion protein OPA1 curtails TNBC growth and nominate OPA1 as a druggable target in TNBC.
Our data show that targeted inhibition of the mitochondrial fusion protein OPA1 curtails TNBC growth and nominate OPA1 as a druggable target in TNBC.
Tracheal intubation is the gold standard in emergency airway management. One way of measuring intubation quality is first pass success rate (FPSR). Mastery of tracheal intubation and maintenance of the skill is challenging for non-anesthesiologists. A combination of individual measures can increase FPSR. Videolaryngoscopy is an important tool augmenting laryngeal visualization. Bougie-first strategy can further improve FPSR in difficult airways. Standardized positioning maneuvers and manipulation of the soft tissues can enhance laryngeal visualization. Fresh frozen cadavers (FFC) are superior models compared to commercially manufactured manikins. By purposefully manipulating FFCs, it is possible to mimic the pre-hospital intubation conditions of helicopter emergency medical service (HEMS).
Twenty-four trauma surgeons (12 per Group, NOVICES no pre-hospital experience, HEMS HEMS physicians) completed an airway training course using FFCs. The FFCs were modified to match airway characteristics of 60 prospectively documented intubations by HEMS physicians prior to the study (BASELINE).