Wisejoyner5916
Aspergillus flavus is the most common etiology of fungal endophthalmitis in India, while Candida albicans is the causative agent in the West. In this study, we determined the role of microglial cells in evoking an inflammatory response following an infection with A. flavus and C. albicans strains isolated from patients with endophthalmitis. Microglia (CHME-3) cells were infected with A. flavus and C. albicans and the expression of Toll-Like Receptors (TLRs), cytokines and Matrix metalloproteinases (MMPs) were assessed at various time intervals. A. flavus infected cells induced higher expressions of TLR-1, -2, -5, -6, -7 and -9 and cytokines such as IL-1α, IL-6, IL-8, IL-10 and IL-17. In contrast, C. albicans infected microglia induced only TLR-2 along with the downregulation of IL-10 and IL-17. The expression of MMP-9 (Matrix metalloproteinase-9) was however upregulated in both A. flavus and C. albicans infected microglia. These results indicate that microglial cells have the ability to incite an innate response towards endophthalmitis causing fungal pathogens via TLRs and inflammatory mediators. Moreover, our study highlights the differential responses of microglia towards yeast vs. filamentous fungi.The purpose of this study was to investigate the effect of non-thermal atmospheric pressure plasma (NTP) treatment on the sandblasting of mechanical method and zirconia primer of chemical method used to increase the bond strength between zirconia and resin cement. In this study, Y-TZP was divided into 4 groups according to the surface treatment methods as follows Zirconia primer (Pr), NTP + Zirconia primer (NTP + Pr), Sandblasting + Zirconia primer (Sb + Pr), Sandblasting + NTP + Zirconia primer (Sb + NTP + Pr). Then, two types of resin cement (G-CEM LinkAce and Rely X-U200) were used to measure the shear bond strength (SBS) and they were divided into non-thermal cycling group and thermal cycling group for aging effect. Statistical analyses were performed using the Kruskal-Wallis test and Mann-Whitney U test. The result of the surface energy (SE), there was no significant difference among the groups (p > 0.05). As a result of the SBS test, the Sb + Pr group had a significantly higher SBS value than the other groups regardless of the resin cement type (p 0.05). Within the limitations of two successive studies, treatment with NTP after sandblasting used for mechanical bond strength showed a positive effect on initial SBS. However, when NTP was treated before the zirconia primer used for the chemical bond strength, it showed a negative effect on SBS compared to other treatment methods, which was noticeable after the thermal cycling treatment.Phytoplasma transmission takes place by insect vectors through an Acquisition Access Period (AAP), Latency Period (LP) and Inoculation Access Period (IAP). Generally, phytoplasmas are believed to be transmitted more efficiently by nymphs because they need a long LP to reach the salivary glands before becoming infective. The transmission can start from adults as well, but in this case a long LP may exceed the insect's lifespan. However, previous evidence has indicated that adults can undergo a shorter LP, even though little knowledge is available regarding the phytoplasma temporal dynamics during this period. Here, we investigate the minimum time required by the phytoplasma to colonize the vector midgut and salivary glands, and finally to be inoculated into a plant. We used the leafhopper Euscelidius variegatus to investigate the life cycle of flavescence dorée phytoplasma (FDP). Phytoplasma-free E. variegatus adults were left on broad beans (BBs) infected with FDP for an AAP of 7 days. Subsequently, they were individually transferred onto a healthy BB for seven different IAPs, each one lasting 24 h from day 8 to 14. Molecular analyses and fluorescence in situ hybridization were performed for FDP detection. FDP was found in the leafhopper midgut from IAP 1 with an infection rate reaching 50%, whereas in the salivary glands it was found from IAP 2 with an infection rate reaching 30%. FDP was also detected in BBs from IAP 4, with infection rates reaching 10%. Our results represent an important step to further deepen the knowledge of phytoplasma transmission and its epidemiology."Electronic nose" technology, including technical and software tools to analyze gas mixtures, is promising regarding the diagnosis of malignant neoplasms. This paper presents the research results of breath samples analysis from 59 people, including patients with a confirmed diagnosis of respiratory tract cancer. The research was carried out using a gas analytical system including a sampling device with 14 metal oxide sensors and a computer for data analysis. After digitization and preprocessing, the data were analyzed by a neural network with perceptron architecture. As a result, the accuracy of determining oncological disease was 81.85%, the sensitivity was 90.73%, and the specificity was 61.39%.In recent years, research and development of autonomous driving technology have gained much interest. Many autonomous driving frameworks have been developed in the past. However, building a safely operating fully functional autonomous driving framework is still a challenge. Several accidents have been occurred with autonomous vehicles, including Tesla and Volvo XC90, resulting in serious personal injuries and death. One of the major reasons is the increase in urbanization and mobility demands. The autonomous vehicle is expected to increase road safety while reducing road accidents that occur due to human errors. The accurate sensing of the environment and safe driving under various scenarios must be ensured to achieve the highest level of autonomy. This research presents Clothoid, a unified framework for fully autonomous vehicles, that integrates the modules of HD mapping, localization, environmental perception, path planning, and control while considering the safety, comfort, and scalability in the real traffic environment. The proposed framework enables obstacle avoidance, pedestrian safety, object detection, road blockage avoidance, path planning for single-lane and multi-lane routes, and safe driving of vehicles throughout the journey. The performance of each module has been validated in K-City under multiple scenarios where Clothoid has been driven safely from the starting point to the goal point. The vehicle was one of the top five to successfully finish the autonomous vehicle challenge (AVC) in the Hyundai AVC.
Antibody-mediated rejection (AMR) is a crucial barrier in the long-term prognosis of transplant recipients.
Peripheral blood mononuclear cells (PBMCs) were collected from kidney allograft recipients (
= 41) and cultured in vitro for 1 week. Furthermore, the supernatants of the cultured PBMCs were analyzed by Luminex single-antigen beads.
Analyses using Luminex single-antigen beads revealed the presence of immunoglobulin (Ig) G donor-specific anti-HLA antibodies (DSAs) was detected in the supernatants of cultured PBMCs collected more frequently than IgM in
DSA-sensitized patients with AMR, and IgM were detectable in patients with stable graft function mainly and several IgM DSAs were detectable in the supernatants of the cultured PBMCs before detecting the IgG levels in sera. We also found that the DSA-specific IgM-secreting memory B cells (mBCs) were more sensitive to the chronic use of immunosuppressive agents than to the IgG-secreting mBCs.
In the transplant recipients, the assessment of supernatants of cultured PBMCs provide more details of immune reactions than the commonly used method that directly measures IgG DSA levels in patient sera and some IgM DSA detection may be a better predictor of IgG DSAs production, which may cause AMR and enable early intervention, in initial stages of AMR development.
In the transplant recipients, the assessment of supernatants of cultured PBMCs provide more details of immune reactions than the commonly used method that directly measures IgG DSA levels in patient sera and some IgM DSA detection may be a better predictor of IgG DSAs production, which may cause AMR and enable early intervention, in initial stages of AMR development.AlMgTi-based metal-intermetallic laminated composites were successfully fabricated through an innovative dual-step vacuum hot pressing. First, this study prepares the AlTi-based laminated composites by vacuum hot pressing at 650 °C. Then, the researchers place the Mg-Al-1Zn (AZ31) magnesium alloy between the prepared AlTi-based laminated composites at 430 °C for hot pressing. This study investigates the microstructure, phase composition, and microhardness distribution across interfaces of the intermetallics and metal. A multilayer phase (Mg17Al12, Al3Mg2, and transition layers) structure can be found from the diffusion layers between Al and AZ31. The microhardness of the material presents a wavy distribution in the direction perpendicular to the layers; the maximum can be up to 600.0 HV0.2 with a minimum of 28.7 HV0.2 The microhardness gradient of an AlMgTi-based composite is smoother due to the different microhardness of the layers, and reduces the interface stress concentration. The bending strength of AlMgTi-based composites can reach 265 MPa, and the specific strength is 105 × 103 Nm/kg, higher than AlTi-based composites.Heart rate (HR) as an important physiological indicator could properly describe global subject's physical status. Photoplethysmographic (PPG) sensors are catching on in field of wearable sensors, combining the advantages in costs, weight and size. Nevertheless, accuracy in HR readings is unreliable specifically during physical activity. Among several identified sources that affect PPG recording, contact pressure (CP) between the PPG sensor and skin greatly influences the signals.
In this study, the accuracy of HR measurements of a PPG sensor at different CP was investigated when compared with a commercial ECG-based chest strap used as a test control, with the aim of determining the optimal CP to produce a reliable signal during physical activity. Seventeen subjects were enrolled for the study to perform a physical activity at three different rates repeated at three different contact pressures of the PPG-based wristband.
The results show that the CP of 54 mmHg provides the most accurate outcome with a Pearsort of subjects are still needed, this study could contribute a profitable indication to enhance accuracy of PPG-based wearable devices.To gain insight into how pathogens adapt to new hosts, Cryptococcus neoformans (H99W) was serially passaged in Galleria mellonella. The phenotypic characteristics of the passaged strain (P15) and H99W were evaluated. P15 grew faster in hemolymph than H99W, in vitro and in vivo, suggesting that adaptation had occurred. However, P15 was more susceptible to hydrogen peroxide in vitro, killed fewer mouse macrophages, and had less fungal burden in human ex vivo macrophages than H99W. Analysis of gene expression changes during Galleria infection showed only a few different genes involved in the reactive oxygen species response. As P15 sheds more GXM than H99W, P15 may have adapted by downregulating hemocyte hydrogen peroxide production, possibly through increased capsular glucuronoxylomannan (GXM) shedding. Hemocytes infected with P15 produced less hydrogen peroxide, and hydrogen peroxide production in response to GXM-shedding mutants was correlated with shed GXM. Histopathological examination of infected larvae showed increased numbers and sizes of immune nodules for P15 compared to H99W, suggesting an enhanced, but functionally defective, response to P15. These results could explain why this infection model does not always correlate with murine models. Overall, C. neoformans' serial passage in G. mellonella resulted in a better understanding of how this yeast evolves under selection.We compared a tailored and a targeted intervention designed to increase genetic testing, clinical breast exam (CBE), and mammography in young breast cancer survivors (YBCS) (diagnosed less then 45 years old) and their blood relatives. A two-arm cluster randomized trial recruited a random sample of YBCS from the Michigan cancer registry and up to two of their blood relatives. Participants were stratified according to race and randomly assigned as family units to the tailored (n = 637) or the targeted (n = 595) intervention. Approximately 40% of participants were Black. Based on intention-to-treat analyses, YBCS in the tailored arm reported higher self-efficacy for genetic services (p = 0.0205) at 8-months follow-up. Genetic testing increased approximately 5% for YBCS in the tailored and the targeted arm (p ≤ 0.001; p less then 0.001) and for Black and White/Other YBCS (p less then 0.001; p less then 0.001). CBEs and mammograms increased significantly in both arms, 5% for YBCS and 10% for relatives and were similar for Blacks and White/Others. YBCS and relatives needing less support from providers reported significantly higher self-efficacy and intention for genetic testing and surveillance. Black participants reported significantly higher satisfaction and acceptability. Effects of these two low-resource interventions were comparable to previous studies. Materials are suitable for Black women at risk for hereditary breast/ovarian cancer (HBOC).To exploit the hydrolytic activity and high selectivity of immobilized lipase B from Candida antarctica on octyl agarose (CALB-OC) in the hydrolysis of triacetin and also to produce new value-added compounds from glycerol, this work describes a chemoenzymatic methodology for the synthesis of the new dimeric glycerol ester 3-((2,3-diacetoxypropanoyl)oxy)propane-1,2-diyl diacetate. According to this approach, triacetin was regioselectively hydrolyzed to 1,2-diacetin with CALB-OC. The diglyceride product was subsequently oxidized with pyridinium chlorochromate (PCC) and a dimeric ester was isolated as the only product. It was found that the medium acidity during the PCC treatment and a high 1,2-diacetin concentration favored the formation of the ester. The synthesized compounds were characterized using IR, MS, HR-MS, and NMR techniques. The obtained dimeric ester was evaluated at 100 ppm against seven bacterial strains and two Candida species to identify its antimicrobial activity. The compound has no inhibitory activity against the bacterial strains used but decreased C. albicans and C. parapsilosis growth by 49% and 68%, respectively. Hemolytic activity was evaluated, and the results obtained support the use of the dimeric ester to control C. albicans and C. parapsilosis growth in non-intravenous applications because the compound shows hemolytic activity.Vehicle detection and classification have become important tasks for traffic monitoring, transportation management and pavement evaluation. Nowadays there are sensors to detect and classify the vehicles on road. However, on one hand, most sensors rely on direct contact measurement to detect the vehicles, which have to interrupt the traffic. On the other hand, complex road scenes produce much noise to consider when to process the signals. In this paper, a data-driven methodology for the detection and classification of vehicles using strain data is proposed. The sensors are well arranged under the bridge deck without traffic interruption. Next, a cascade pre-processing method is applied for vehicle detection to eliminate in-situ noise. Then, a neural network model is trained to identify the close-range following vehicles and separate them by Non-Maximum Suppression. Finally, a deep convolutional neural network is designed and trained to identify the vehicle types based on the axle group. The methodology was applied in a long-span bridge. Three strain sensors were installed beneath the bridge deck for a week. High robustness and accuracy were obtained by these algorithms. The methodology proposed in this paper is an adaptive and promising method for vehicle detection and classification under complex noise. It would serve as a supplement to current transportation systems and provide reliable data for management and decision-making.The utilization of sputtered AlN nucleation layers (NLs) and patterned sapphire substrates (PSSs) could greatly improve GaN crystal quality. However, the growth mechanism of GaN on PSSs with sputtered AlN NLs has not been thoroughly understood. In this paper, we deposited AlON by sputtering AlN with O2, and we found that the variation of thickness of sputtered AlON NLs greatly influenced GaN growth on PSSs. (1) For 10 nm thin AlON sputtering, no AlON was detected on the cone sidewalls. Still, GaN nucleated preferably in non-(0001) orientation on these sidewalls. (2) If the thickness of the sputtered AlON NL was 25 nm, AlON formed on the cone sidewalls and flat regions, and some small GaN crystals formed near the bottom of the cones. (3) If the sputtered AlON was 40 nm, the migration ability of Ga atoms would be enhanced, and GaN nucleated at the top of the cones, which have more chances to grow and generate more dislocations. Finally, the GaN growth mechanisms on PSSs with sputtered AlON NLs of different thicknesses were proposed.(1) Objective The World Health Organization's (WHO) International Classification of Functioning, Disability and Health (ICF) classification is a unified framework for the description of health and health-related states. This study aimed to use the ICF framework to classify outcome measures used in follow-up studies of coronavirus outbreaks and make recommendations for future studies. (2) Methods EMBASE, MEDLINE, CINAHL and PsycINFO were systematically searched for original studies assessing clinical outcomes in adult survivors of severe acute respiratory distress syndrome (SARS), middle east respiratory syndrome (MERS) and coronavirus disease-19 (COVID-19) after hospital discharge. Individual items of the identified outcome measures were linked to ICF second-level and third-level categories using ICF linking rules and categorized according to an ICF component. (3) Results In total, 33 outcome measures were identified from 36 studies. Commonly used (a) ICF body function measures were Pulmonary Function Tests (PFT), Impact of event scale (IES-R) and Hospital Anxiety and Depression Scale (HADS); (b) ICF activity was 6-Minute Walking Distance (6MWD); (c) ICF participation measures included Short Form-36 (SF-36) and St George's Respiratory Questionnaire (SGRQ). ICF environmental factors and personal factors were rarely measured. (4) Conclusions We recommend future COVID-19 follow-up studies to use the ICF framework to select a combination of outcome measures that capture all the components for a better understanding of the impact on survivors and planning interventions to maximize functional return.The quality and intelligibility of the speech are usually impaired by the interference of background noise when using internet voice calls. To solve this problem in the context of wearable smart devices, this paper introduces a dual-microphone, bone-conduction (BC) sensor assisted beamformer and a simple recurrent unit (SRU)-based neural network postfilter for real-time speech enhancement. Assisted by the BC sensor, which is insensitive to the environmental noise compared to the regular air-conduction (AC) microphone, the accurate voice activity detection (VAD) can be obtained from the BC signal and incorporated into the adaptive noise canceller (ANC) and adaptive block matrix (ABM). The SRU-based postfilter consists of a recurrent neural network with a small number of parameters, which improves the computational efficiency. The sub-band signal processing is designed to compress the input features of the neural network, and the scale-invariant signal-to-distortion ratio (SI-SDR) is developed as the loss function to minimize the distortion of the desired speech signal. Experimental results demonstrate that the proposed real-time speech enhancement system provides significant speech sound quality and intelligibility improvements for all noise types and levels when compared with the AC-only beamformer with a postfiltering algorithm.
Blood coagulation disorders commonly occur with severe coronavirus disease 2019 (COVID-19). However, there is only limited evidence on differentiating the pattern of the hemostatic parameters from those of typical sepsis-induced coagulopathy (SIC).
To elucidate the specific pattern of coagulopathy induced by COVID-19 pneumonia, this retrospective, observational study targeted consecutive adult patients with COVID-19-induced acute respiratory distress syndrome (ARDS) and compared hemostatic biomarkers with non-COVID-19-induced septic ARDS. Multilevel mixed-effects regression analysis was performed and Kaplan-Meier failure curves were constructed.
We enrolled 24 patients with COVID-19-induced ARDS and 200 patients with non-COVID-19-induced ARDS. Platelet count, antithrombin activity, and prothrombin time in the COVID-19 group were almost within normal range and time series alterations of these markers were significantly milder than the non-COVID-19 group (
= 0.052, 0.037, and 0.005, respectively). However, fibrin/fibrinogen degradation product and D-dimer were significantly higher in the COVID-19 group (
= 0.001, 0.002, respectively). COVID-19 patients had moderately high levels of thrombin-antithrombin complex and plasmin-alpha2-plasmin inhibitor complex but normal plasminogen activator inhibitor-1 level.
The hematological phenotype of COVID-19-induced coagulopathy is quite different from that in typical SIC characterized by systemic hypercoagulation and suppressed fibrinolysis. Instead, local thrombus formation might be promoted in severe COVID-19.
The hematological phenotype of COVID-19-induced coagulopathy is quite different from that in typical SIC characterized by systemic hypercoagulation and suppressed fibrinolysis. Instead, local thrombus formation might be promoted in severe COVID-19.Rhodiola species have a long history of use in traditional medicine in Asian and European countries and have been considered to possess resistance to the challenges presented by extreme altitudes. However, the influence of different Rhodiola species on quality is unclear, as well as the influence of altitude on phytochemicals. In this study, the phenolic components and antioxidant abilities of two major Rhodiola species are compared, namely Rhodiolacrenulata and Rhodiola rosea, and the metabolomes of Rhodiolacrenulata from two representative elevations of 2907 and 5116 m are analyzed using a UPLC-QqQ-MS-based metabolomics approach. The results show that the phenolic components and antioxidant activities of Rhodiolacrenulata are higher than those of Rhodiola rosea, and that these effects in the two species are positively correlated with elevation. Here, 408 metabolites are identified, of which 178 differential metabolites (128 upregulated versus 50 downregulated) and 19 biomarkers are determined in Rhodiola crenulata. Further analysis of these differential metabolites showed a significant upregulation of flavonoids, featuring glucosides, the enhancement of the phenylpropanoid pathway, and the downregulation of hydrolyzed tannins in Rhodiola crenulata as elevation increased. Besides, the amino acids of differential metabolites were all upregulated as the altitude increased. Our results contribute to further exploring the Rhodiola species and providing new insights into the Rhodiola crenulata phytochemical response to elevation.The effectiveness of carbon nanotubes (CNT) deagglomeration by rapid expansion of supercritical suspensions (RESS) in nitrogen and carbon dioxide fluids was studied in this work. Two different mechanisms of deagglomeration were proposed for these two fluids at various temperature and pressure conditions. Ultrasound attenuation spectroscopy was applied as an express method of determining median diameter and aspect ratio of CNTs. At least twofold reduction of the diameter was shown for CNT bundles processed by RESS technique. Aspect ratio of processed CNTs, calculated from acoustic attenuation spectra, increased to 340. These results were in a good agreement with atomic force microscopy data.Bacterial resistance leads to severe public health and safety issues worldwide. Alternatives to antibiotics are currently needed. A promising lasso peptide, microcin J25 (MccJ25), is considered to be the best potential substitute for antibiotics to treat pathogen infection, including enterotoxigenic Escherichia coli (ETEC). This study evaluated the efficacy of MccJ25 in the prevention of ETEC infection. Forty-five female BALB/c mice of clean grade (aged seven weeks, approximately 16.15 g) were randomly divided into three experimental groups as follows (i) control group (uninfected); (ii) ETEC infection group; (iii) MccJ25 + ETEC group. Fifteen mice per group in five cages, three mice/cage. MccJ25 conferred effective protection against ETEC-induced body weight loss, decrease in rectal temperature and increase in diarrhea scores in mice. Moreover, in ETEC-challenged mice model, MccJ25 significantly improved intestinal morphology, decreased intestinal histopathological scores and attenuated intestinal inflammation by decreasing proinflammatory cytokines and intestinal permeability, including reducing serum diamine oxidase and D-lactate levels. MccJ25 enhanced epithelial barrier function by increasing occludin expression in the colon and claudin-1 expression in the jejunum, ultimately improving intestinal health of host. MccJ25 was further found to alleviate gut inflammatory responses by decreasing inflammatory cytokine production and expression via the activation of the mitogen-activated protein kinase and nuclear factor κB signaling pathways. Taken together, the results indicated that MccJ25 protects against ETEC-induced intestinal injury and intestinal inflammatory responses, suggesting the potential application of MccJ25 as an excellent antimicrobial or anti-inflammation agent against pathogen infections.
The aim of this retrospective study is to assess the incidence, localization, and potential predictors of rapid early progression (REP) prior to initiation of radiotherapy in newly diagnosed glioblastoma patients and to compare survival outcomes in cohorts with or without REP in relation to the treatment.
We assessed a consecutive cohort of 155 patients with histologically confirmed irradiated glioblastoma from 1/2014 to 12/2017. A total of 90 patients with preoperative, postoperative, and planning MRI were analyzed.
Median age 59 years, 59% men, and 39 patients (43%) underwent gross total tumor resection. The Stupp regimen was indicated to 64 patients (71%); 26 patients (29%) underwent radiotherapy alone. REP on planning MRI performed shortly prior to radiotherapy was found in 46 (51%) patients, most often within the surgical cavity wall, and the main predictor for REP was non-radical surgery (p < 0.001). The presence of REP was confirmed as a strong negative prognostic factor; median overall survivrs in future prospective clinical trials enrolling patients before initiation of radiotherapy.
Especially in the subgroup of patients without radical resection, one may recommend as early initiation of radiotherapy as possible. The phenomenon of REP should be recognized as an integral part of stratification factors in future prospective clinical trials enrolling patients before initiation of radiotherapy.Globally, lung cancer is the most prevalent cancer type. However, screening and early detection is challenging. Previous studies have identified metabolites as promising lung cancer biomarkers. This systematic literature review and meta-analysis aimed to identify metabolites associated with lung cancer risk in observational studies. The literature search was performed in PubMed and EMBASE databases, up to 31 December 2019, for observational studies on the association between metabolites and lung cancer risk. Heterogeneity was assessed using the I2 statistic and Cochran's Q test. Meta-analyses were performed using either a fixed-effects or random-effects model, depending on study heterogeneity. Fifty-three studies with 297 metabolites were included. Most identified metabolites (252 metabolites) were reported in individual studies. Meta-analyses were conducted on 45 metabolites. Five metabolites (cotinine, creatinine riboside, N-acetylneuraminic acid, proline and r-1,t-2,3,c-4-tetrahydroxy-1,2,3,4-tetrahydrophenanthrene) and five metabolite groups (total 3-hydroxycotinine, total cotinine, total nicotine, total 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (sum of concentrations of the metabolite and its glucuronides), and total nicotine equivalent (sum of total 3-hydroxycotinine, total cotinine and total nicotine)) were associated with higher lung cancer risk, while three others (folate, methionine and tryptophan) were associated with lower lung cancer risk. Significant heterogeneity was detected across most studies. These significant metabolites should be further evaluated as potential biomarkers for lung cancer.The spread of COVID-19 has altered sport in Spain, forcing athletes to train at home. The objectives of the study were (i) to compare training and recovery conditions before and during the isolation period in handball players according to gender and competitive level, and (ii) to analyse the impact of psychological factors during the isolation period. A total of 187 participants (66 women and 121 men) answered a Google Forms questionnaire about demographics, training, moods, emotional intelligence, and resilience sent using the snowball sampling technique. T-test and analysis of variance (ANOVA) were used to compare sport level and gender differences. Linear regressions were used to analyse the psychological influence on training. Handball players reduced training intensity (in the whole sample; p = 0.44), training volume (especially in professional female handball players; p less then 0.001), and sleep quality (especially in professional male handball players; p = 0.21) and increased sleep hours (especially in non-professional female players; p = 0.006) during the isolation period. Furthermore, psychological factors affected all evaluated training and recovery conditions during the quarantine, except for sleep quantity. Mood, emotional intelligence, and resilience have an influence on physical activity levels and recovery conditions. In addition, training components were modified under isolation conditions at p less then 0.001. We conclude that the COVID-19 isolation period caused reductions in training volume and intensity and decreased sleep quality. Furthermore, psychological components have a significant impact on training and recovery conditions.Many studies have reported the biological activities of retrofractamide C (RAC). However, few studies have investigated the anti-inflammatory effect of RAC. In the present study, we investigated the anti-inflammatory effect of RAC using lipopolysaccharide (LPS)-induced J774A.1 cells and a xylene-induced mouse ear edema model. Treatment with RAC decreased LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) secretion and inducible NO synthase (iNOS) and cyclooxygenase 2 (COX2) protein expression. It also downregulated the LPS-induced production of interleukin-1β (IL-1β) and interleukin-6 (IL-6) but not tumor necrosis factor α (TNF-α). In the LPS-induced signaling pathway, RAC inhibited the phosphorylation of extracellular signal-regulated kinase (ERK) and nuclear factor kappa light chain enhancer of activated B cells (NF-κB) but not c-Jun N-terminal kinase (JNK) or p38. In a xylene-induced mouse ear edema model, RAC treatment alleviated edema formation and inflammatory cell infiltration. In conclusion, the present study indicates that RAC has the potential to have anti-inflammatory effects and could be a prospective functional food.This paper presents an analysis of modern research related to potential threats in a vehicle cabin, which is based on situation monitoring during vehicle control and the interaction of the driver with intelligent transportation systems (ITS). In the modern world, such systems enable the detection of potentially dangerous situations on the road, reducing accident probability. However, at the same time, such systems increase vulnerabilities in vehicles and can be sources of different threats. In this paper, we consider the primary information flows between the driver, vehicle, and infrastructure in modern ITS, and identify possible threats related to these entities. We define threat classes related to vehicle control and discuss which of them can be detected by smartphone sensors. We present a case study that supports our findings and shows the main use cases for threat identification using smartphone sensors Drowsiness, distraction, unfastened belt, eating, drinking, and smartphone use.The aim of this study was to identify determinants of the cardiovascular capacity of 16 male amateur long-distance skiers during the transition period. These factors can vary from amateur marathon skiers, who represent a sort of midpoint between inactive people and professional athletes. Cardiovascular capacity depends mainly on the volume and intensity of the training, which are different between these groups. Finding the factors affecting heart condition of amateur athletes can be an important element in their health care and can help the athletes to achieve their full performance potential. Therefore, ergospirometric and hematological tests were performed. As a result, predictors for volume oxygen uptake were determined using a regression model, which included the following variables the percentage of monocytes (p = 0.031), the concentration of sodium (p = 0.004), and total calcium (p = 0.03). All these parameters negatively affected VO2 max. Biochemical and physiological monitoring of amateur athletes can help to protect their health and prepare them properly for their training. The growing popularity of long-distance competitions among middle-aged amateur athletes and the lack of guidance on how to assess their health indicate the need for further research.The prediction accuracy of the Predicted Heat Strain (PHS) model is affected by the correction approaches of static thermophysical properties of clothing considering the pumping effects of wind and body movement. In this study, a comparison of different correction algorithms for three types of clothing and their influence on the heat strain predicted by the PHS model was carried out with experimental data obtained from the literature. Results show that the dynamic insulation values calculated by ISO 9920 corrections are larger than those obtained by ISO 7933 when the static insulation values are higher than 0.4 clo, but when the static values are lower than 0.4 clo, it varies contrarily. The dynamic evaporative resistance values calculated with ISO 9920 equations are larger than those with ISO 7933. The prediction accuracy of the PHS model with ISO 9920 corrections and the addition of the walking speed input parameter can be improved for normal clothing (NC) in a hot environment and high clothing insulation. For specialized, insulating, cold weather clothing (SC), ISO 7933 corrections with an added walking speed input parameter to the PHS model have a good prediction precision.The burden of chronic disease in Europe continues to grow. A major challenge facing national governments is how to tackle the risk factors of sedentary lifestyle, alcohol abuse, smoking, and unhealthy diet. These factors are complex and necessitate intersectoral collaboration to strengthen health promotion, counter-act the social determinants of health, and reduce the prevalence of chronic disease. European countries have diverse intersectoral collaboration to encourage health promotion activities. In the Joint Action CHRODIS-PLUS success factors for intersectoral collaboration within and outside healthcare which strengthen health promotion activities were identified with a mixed method design via a survey of 22 project partners in 14 countries and 2 workshops. In six semi-structured interviews, the mechanisms underlying these success factors were examined. These mechanisms can be very context-specific but do give more insight into how they can be replicated. In this paper, 20 health promotion interventions from national programs in CHRODIS PLUS are explored. This includes community interventions, policy actions, integrated approaches, capacity building, and training activities. The interventions involved collaboration across three to more than six sectors. The conclusion is a set of seven recommendations that are considered to be essential for fostering intersectoral collaboration to improve health-promoting activities.Resistance against penetration of various rays including electromagnetic waves (EM), infrared rays (IR), and ultraviolet rays (UV) has been realized by using copper (Cu)-coated fabrics. However, the corrosion of the Cu on coated fabrics influenced the shielding effectiveness of the various rays. Besides, the metal-coated fabrics have high density and are unbreathable. This work aims to solve the problem by incorporating nickel (Ni) into the Cu coating on the ultra-light polyester fibrous materials (Milife® composite nonwoven fabric-10 g/m2, abbreviation Milife) via electroless plating. The electromagnetic interference (EMI), IR test, ultraviolet protection factor (UPF), water contact angle, and air permeability of the Cu/Ni-coated Milife fabric were measured. All the samples were assumed as ultra-light and breathable by obtaining the similar fabric density (~10.57 g/m2) and large air permeability (600-1050 mm/s). The Cu/Ni deposition on the Milife fabrics only covered the fibers. The EM shielding effectiveness (SE) decreased from 26 to 20 dB, the IR reflectance (Rinfrared) decreased from 0.570 to 0.473 with increasing wNi from 0 to 19.5 wt %, while the wNi improved the UPF from 9 to 48. Besides, addition of Ni changed the Cu/Ni-coated Milife fabric from hydrophilicity to the hydrophobicity by observing WCA from 77.7° to 114°.Excessive and prolonged intake of highly palatable, high fat (HF) foods contributes to the pathogenesis of obesity, metabolic syndrome, and cognitive impairment. Exercise can restore energy homeostasis and suppress HF diet preference in rats. However, it is unclear if exercise confers similar protection against the detrimental outcomes associated with a chronic HF diet preference and feeding in both sexes. We used our wheel running (WR) and two-diet choice (chow vs. HF) paradigm to investigate the efficacy of exercise in reversing HF diet-associated metabolic and cognitive dysregulation in rats, hypothesizing that beneficial effects of exercise would be more pronounced in males. All WR rats showed HF diet avoidance upon running initiation, and males, but not females, had a prolonged reduction in HF diet preference. Moreover, exercise only improved glucose tolerance and insulin profile in males. Compared to sedentary controls, all WR rats improved learning to escape on the Barnes maze. Only WR females increased errors made during subsequent reversal learning trials, indicating a sex-dependent effect of exercise on behavioral flexibility. Taken together, our results suggest that exercise is more effective at attenuating HF-associated metabolic deficits in males, and highlights the importance of developing sex-specific treatment interventions for obesity and cognitive dysfunction.Incorporation of antioxidant agents in edible films and packages often relies in the usage of essential oils and other concentrated hydrophobic liquids, with reliable increases in antimicrobial and antioxidant activities of the overall composite, but with less desirable synthetic sources and extraction methods. Hydroethanolic extracts of commercially-available red macroalgae Gracilaria gracilis were evaluated for their antioxidant potential and phenolic content, as part of the selection of algal biomass for the enrichment of thermoplastic film coatings. The extracts were obtained through use of solid-liquid extractions, over which yield, DPPH radical reduction capacity, total phenolic content, and FRAP activity assays were measured. Solid-to-liquid ratio, extraction time, and ethanol percentages were selected as independent variables, and response surface methodology (RSM) was then used to estimate the effect of each extraction condition on the tested bioactivities. These extracts were electrospun into polypropylene films and the antioxidant activity of these coatings was measured. Similar bioactivities were measured for both 100% ethanolic and aqueous extracts, revealing high viability in the application of both for antioxidant coating purposes, though activity losses as a result of the electrospinning process were above 60% in all cases.Many studies have been conducted to fabricate unique structures on flexible substrates and to apply such structures to a variety of fields. However, it is difficult to produce unique structures such as multilayer, nanospheres and porous patterns on a flexible substrate. We present a facile method of nanospheres based on laser-induced porous graphene (LIPG), by using laser-induced plasma (LIP). We fabricated these patterns from commercial polyimide (PI) film, with a 355 nm pulsed laser. For a simple one-step process, we used laser direct writing (LDW), under ambient conditions. We irradiated the PI film at a defocused plane -4 mm away from the focal plane, for high pulse overlap rate. The effect of the laser scanning speed was investigated by FE-SEM, to observe morphological characterization. Moreover, we confirmed the pattern characteristics by optical microscope, Raman spectroscopy and electrical experiments. The results suggested that we could modulate the conductivity and structural color by controlling the laser scanning speed. In this work, when the speed of the laser is 20 mm/s and the fluence is 5.28 mJ/cm2, the structural color is most outstanding. Furthermore, we applied these unique characteristics to various colorful patterns by controlling focal plane.Aquatic insects comprise 10% of all insect diversity, can be found on every continent except Antarctica, and are key components of freshwater ecosystems. However, aquatic insect genome biology lags dramatically behind that of terrestrial insects. If genomic effort was spread evenly, one aquatic insect genome would be sequenced for every ~9 terrestrial insect genomes. Instead, ~24 terrestrial insect genomes have been sequenced for every aquatic insect genome. This discrepancy is even more dramatic if the quality of genomic resources is considered; for instance, while no aquatic insect genome has been assembled to the chromosome level, 29 terrestrial insect genomes spanning four orders have. We argue that a lack of aquatic insect genomes is not due to any underlying difficulty (e.g., small body sizes or unusually large genomes), yet it is severely hampering aquatic insect research at both fundamental and applied scales. By expanding the availability of aquatic insect genomes, we will gain key insight into insect diversification and empower future research for a globally important taxonomic group.Obstacle detection is one of the essential capabilities for autonomous robots operated on unstructured terrain. In this paper, a novel laser-based approach is proposed for obstacle detection by autonomous robots, in which the Sobel operator is deployed in the edge-detection process of 3D laser point clouds. The point clouds of unstructured terrain are filtered by VoxelGrid, and then processed by the Gaussian kernel function to obtain the edge features of obstacles. The Euclidean clustering algorithm is optimized by super-voxel in order to cluster the point clouds of each obstacle. The characteristics of the obstacles are recognized by the Levenberg-Marquardt back-propagation (LM-BP) neural network. The algorithm proposed in this paper is a post-processing algorithm based on the reconstructed point cloud. Experiments are conducted by using both the existing datasets and real unstructured terrain point cloud reconstructed by an all-terrain robot to demonstrate the feasibility and performance of the proposed approach.Results indicating that a high milk intake is associated with both higher and lower risks of fragility fractures, or that indicate no association, can all be presented in the same meta-analysis, depending on how it is performed. In this narrative review, we discuss the available studies examining milk intake in relation to fragility fractures, highlight potential problems with meta-analyses of such studies, and discuss potential mechanisms and biases underlying the different results. We conclude that studies examining milk and dairy intakes in relation to fragility fracture risk need to study the different milk products separately. Meta-analyses should consider the doses in the individual studies. Additional studies in populations with a large range of intake of fermented milk are warranted.Patients with refractory diabetes are defined as type 2 diabetes (T2D) patients; they cannot achieve optimal glycemic control and exhibit persistent elevations of hemoglobin A1c (HbA1c) ≥8% while on appropriate therapy. Hyperglycemia can lead to severe microvascular/macrovascular complications. However, in contrast to T2D, few studies have focused specifically on the gut microbiota in refractory diabetes. To examine this issue, we recruited 79 subjects with T2D and refractory diabetes (RT2D), and all subjects received standard therapy with Metformin or other hypoglycemic agents with or without insulin for at least one year. The α-diversity displayed no significant difference, whereas the β-diversity showed a marginal significance (p = 0.054) between T2D and RT2D. The evaluation of taxonomic indices revealed reductions in both Akkermansia muciniphila and Fusobacterium and a corresponding enrichment of Bacteroides vulgatus, Veillonella denticariosi among those with RT2D. These microbial markers distinguished RT2D from T2D with an acceptable degree of discrimination (area under the curve (AUC) = 0.719, p less then 0.01) and were involved in several glucose-related functional pathways. Furthermore, the relative abundance of Akkermansia muciniphila was negatively correlated with HbA1c. Our combined results reveal unique features of the gut microbiota in RT2D and suggest that the evaluation of the gut microbiota could provide insights into the mechanisms underlying glycemic control and the impact of therapeutic modalities in patients with RT2D.This study aimed at determining the prevalence and predictors of hypovitaminosis D (serum 25-hydroxyvitamin D less then 30 ng/mL) among office workers in a subtropical region from an electronic hospital database. Totally, 2880 office workers aged 26-65 years who received health examinations with vitamin D status and total calcium concentrations at a tertiary referral center were retrospectively reviewed. Subjects were divided into groups according to genders, age (i.e., 26-35, 36-45, 46-55, 56-65), body-mass index (BMI) (i.e., obese BMI ≥ 30, overweight 25 ≤ BMI less then 30, normal 20 ≤ BMI less then 25, and underweight BMI less then 20) and seasons (spring/winter vs. summer/autumn) for identifying the predictors of hypovitaminosis D. Corrected total calcium level less then 8.4 mg/dL is considered as hypocalcemia. Multivariate logistic regression demonstrated that females (AOR 2.33, (95% CI 1.75, 3.09)), younger age (4.32 (2.98, 6.24), 2.82 (1.93, 4.12), 1.50 (1.03, 2.17)), and season (winter/spring) (1.55 (1.08, 2.22)) were predictors of hypovitaminosis D, whereas BMI was not in this study. Despite higher incidence of hypocalcemia in office workers with hypovitaminosis D (p less then 0.001), there was no association between vitamin D status and corrected total calcium levels. A high prevalence (61.9%) of hypovitaminosis D among office workers in a subtropical region was found, highlighting the importance of this occupational health issue.Regeneration is a biological process restoring lost or amputated body parts. The capability of regeneration varies among organisms and the regeneration of the central nervous system (CNS) is limited to specific animals, including the earthworm Perionyx excavatus. Thus, it is crucial to establish P. excavatus as a model system to investigate mechanisms of CNS regeneration. Here, we set up a culture system to sustain the life cycle of P. excavatus and characterize the development of P. excavatus, from embryo to juvenile, based on its morphology, myogenesis and neurogenesis. During development, embryos have EdU-positive proliferating cells throughout the whole body, whereas juveniles maintain proliferating cells exclusively in the head and tail regions, not in the trunk region. Interestingly, juveniles amputated at the trunk, which lacks proliferating cells, are able to regenerate the entire head. In this process, a group of cells, which are fully differentiated, reactivates cell proliferation. Our data suggest that P. excavatus is a model system to study CNS regeneration, which is dependent on the dedifferentiation of cells.This article aims to use contemporary (terrestrial) animal welfare science as a lens to evaluate the state of knowledge concerning welfare in fish species, focusing on farmed fishes. We take advantage of the vast expertise-including previous pitfalls and accomplishments-in the investigation of welfare in terrestrial vertebrates, borrowing questions and methodologies from terrestrial animal welfare science in order to (1) better understand the challenges and opportunities in the study of welfare in fish species, and (2) propose strategies for filling knowledge gaps.Acute RNA viral encephalomyelitis is a serious complication of numerous virus infections. Antibodies in the cerebral spinal fluid (CSF) are correlated to better outcomes, and there is substantive evidence of antibody secreting cells (ASCs) entering the central nervous system (CNS) and contributing to resolution of infection. Here, we review the RNA viruses known to cause acute viral encephalomyelitis with mechanisms of control that require antibody or ASCs. We compile the cytokines, chemokines, and surface receptors associated with ASC recruitment to the CNS after infection and compare known antibody-mediated mechanisms as well as potential noncytolytic mechanisms for virus control. These non-canonical functions of antibodies may be employed in the CNS to protect precious non-renewable neurons. Understanding the immune-specialized zone of the CNS is essential for the development of effective treatments for acute encephalomyelitis caused by RNA viruses.Attachment insecurity has been associated with negative behaviors during conflict and decreased relationship satisfaction. We theorize that individuals high in attachment anxiety and/or avoidance are less mindful during conflict with their romantic partners, and thus more likely to ruminate. Decreased mindfulness and higher levels of rumination may be important mechanisms in the relationship between attachment insecurity and conflict behavior, as it may be more difficult to engage in constructive problem-solving skills when one is distracted from the present moment. We conducted an online survey assessing 360 participants' attachment orientations, levels of mindfulness and rumination, behavior during conflict, and experience with mindfulness activities. Using a serial mediation model, we found that mindfulness and rumination mediated the relationship between attachment insecurity and negative conflict behaviors. We further discovered that individuals high in attachment insecurity were more likely to report negative experiences with mindfulness activities (i.