Underwoodharboe8929
UVC irradiation has been proved to promote the formation of hydroxyl radicals by BDD electrode to facilitate the degradation process. For these BPs, nearly 100% mineralization can be achieved by a modified strategy using a short-time UVC-assisted BDD electrolysis (120 min) that is followed by UVC photolysis (360 min). Finally, the eco-toxicity of the BPs solutions towardsVibrio Fischeri was significantly removed after 120 min of the electrochemical degradation period. Based on these results, the UVC-assisted electrochemical treatment using a BDD electrode can be considered a promising technology for the removal of novel BPs and the reduction of their hazardous effects to aqueous environments. Train movements generate oscillations that are transmitted as waves through the track support system into its surroundings. The vibration waves propagate through the soil layers and reach to nearby buildings creating distractions for human activities and causing equipment malfunctioning. Not only the train components and the rails, but also the surrounding tunnel, soil and rock strata have dynamic characteristics that play significant roles in the vibration levels felt in a nearby structure. This paper presents a finite element study conducted to investigate the vibrations resulting from train movements in nearby subway tunnels. The subway line is located at an average horizontal distance of 50 ft (15.2 m) from the structure in assessment, which is a six-story office building. The main goal of the work is to assess the train-induced vibrations at the ground level of the building through a case study and sensitivity analysis. A plane strain finite element model is built to represent the railroad tunnel embedded in the rock and the soil stratum above it. The one train loading function is applied to the model as a point source at the track level and compared to the two-train scenario. Other simulations are undertaken for sensitivity analysis involving increased loading, decreased damping and decreased distance to tunnels. Even though there are several numerical studies on the propagation of train induced vibrations in the literature; a finite element model accompanied with a sensitivity analysis has not been discussed in detail in a technical publication before. The paper not only presents the finite element modeling but also compares the results with the criteria of Transit Noise and Vibration Impact Assessment Manual, which was published by the Federal Transit Administration (FTA) of the U.S. Department of Transportation. The use of organic-based amendments for gentle remediation options (GRO), i.e. the stabilization of trace elements (TE) in polluted soils and the reduction of their impact on soil microbial and biochemical features, has been constantly growing in last 10 years. To verify the effectiveness of biochar and compost in such context, biochar (1 and 3% w/w), compost (3% w/w) and their combination (compost 2% + biochar 2% w/w) were added to two sub-alkaline soils (FS and MS) contaminated with Sb (41-99 mg kg-1 respectively), As (~18 mg kg-1), and trace metals such as Ni (103-172 mg kg-1 respectively) and Cr (165-132 mg kg-1 respectively). Most of the treatments (especially 3% biochar) reduced labile TE pools (water-soluble and exchangeable) and increased their residual (non-extractable) fractions (e.g. +48, 56, 66, and 68% of residual Sb, As, Cr and Ni in MS-treated soil compared to the untreated control). The amendments addition had both stimulating and inhibiting effects on the activity of soil microbial communities, as shown by the Biolog community level physiological profiles. However, in both soils, 3% biochar produced the highest increase of metabolic potential as well as the use of carboxylic acids and polymers by the soil microbial communities. Likewise, soil dehydrogenase (DHG), β-glucosidase (β-GLU) and urease (URE) activities were significantly enhanced in FS and MS soils treated with 3% biochar (e.g. +77, 48, and 17% for DHG, URE and β-GLU in FS-3% biochar with respect to untreated FS). Overall, the results from this study showed that the amendments investigated (particularly 3% biochar) can be effectively used for GRO of sub-alkaline soils, being able to reduce labile TE and to increase the metabolic potential and actual biochemical activities of the respective soil microbial communities. The manifold environmental implications of such effects are discussed. Silica nanoparticles (SiNPs) have been widely used in human health related products, such as food additives, cosmetics and even drug delivery, gene therapy or bioimaging. Recently, a first-in-human clinical trial based on polyethylene glycol (PEG)-modified SiNPs had been approved by US FDA to trace melanoma. However, as a nano-based drug delivery system, its biocompatibility and vascular toxicity are still largely unknown. Thus, we synthesized the fluorescent SiNPs to explore the biocompatibility and vascular endothelial function, and compare different biological effects caused by PEG-modified and unmodified SiNPs in cells and zebrafish model. The characterizations of SiNPs and PEG-modified SiNPs were analyzed by TEM, SEM, AFM and DLS, which exhibited relatively good stable and dispersive. Compared with SiNPs, PEG-modified SiNPs had markedly reduced the inflammatory response and vascular damage in Tg (fli-1 EGFP) and Tg (mpo GFP) transgenic zebrafish lines, respectively. Consistent with the in vivo results, the PEG-modified SiNPs had been found to significantly decline the levels of ROS, inflammatory cytokines and mitochondrial-mediated apoptosis in vascular endothelial cells compared to SiNPs, and the ROS scavenger NAC could effectively alleviate the above adverse effects induced by nanoparticles. Our results suggested that the PEG-modified SiNPs could become more safety via increasing the biocompatibility and decreasing cellular toxicities in living organisms. The Yangtze River Delta urban agglomeration is an important region in China, but the limited space supports a large scale and high intensity of economic and social activities. To objectively evaluate the Yangtze River Delta urban agglomeration land resources comprehensive supporting capacity (LRCSC), the spatial distribution pattern and the factors affecting the comprehensive supporting capacity's spatial heterogeneity, this study established a three-stage hybrid model, and the model included regional assessment, spatial pattern analysis and source apportionment to quantitatively evaluate the integrated space based on the comprehensive supporting capacity for regional land resources. First, based on the data of 26 cities in the 2016 Yangtze River Delta urban agglomeration and the data of 25 indicators, we calculated the LRCSC index for each city. Then, we visualized the supporting capacity based on the space distribution and used the Pearson correlation coefficient method to determine the factors influencing the comprehensive supporting capacity's spatial heterogeneity. Finally, we used the factor analysis method to further identify the key factors affecting LRCSC. The results show that (1) the horizontal spatial difference of the LRCSC in the Yangtze River Delta urban agglomeration is large, the overall change in the LRCSC index shows the spatial differentiation feature of "gradually decreasing from the centre to the surrounding area", and the local spatial distribution shows the distribution feature of point dispersion and zonal aggregation. (2) The degree of correlation between the LRCSC and social development element is the strongest in the element layer and the correlation coefficient between them is 0.548803. Among them, social development is positively correlated with economic technology. (3) The population density and per capita gross domestic product (GDP) are two important factors affecting the spatial differences in LRCSC in the Yangtze River Delta urban agglomerations. Nitrite accumulation in aquatic environments is a potential risk factor that disrupts multiple physiological functions in aquatic animals. In this study, the physiology, transcriptome and metabolome of the control group (LV-C), nitrite-tolerance group (LV-NT) and nitrite-sensitive group (LV-NS) were investigated to identify the stress responses and mechanisms underlying the nitrite tolerance of Litopenaeus vannamei. After LV-NT and LV-NS were subjected to nitrite stress, the hemocyanin contents were significantly decreased, and hepatopancreas showed severe histological damage compared with LV-C. Likewise, the antioxidant enzymes were also significantly changed after nitrite exposure. The transcriptome data revealed differentially expressed genes associated with immune system, cytoskeleton remodeling and apoptosis in LV-NT and LV-NS. The combination of transcriptomic and metabolomic analysis revealed nitrite exposure disturbed metabolism processes in L. vannamei, including amino acid metabolism, nucleotide metabolism and lipid metabolism. The multiple comparative analysis implicated that higher nitrite tolerance of LV-NT than LV-NS may be attributed to enhanced hypoxia inducible factor-1α expression to regulate energy supply and gaseous exchange. Moreover, LV-NT showed higher antioxidative ability, detoxification gene expression and enhanced fatty acids contents after nitrite exposure in relative to LV-NS. Collectively, all these results will greatly provide new insights into the molecular mechanisms underlying the stress responses and tolerance of nitrite exposure in L. vannamei. Social buffering occurs when the presence of a companion attenuates the physiological and/or behavioral effects of a stressful or fear-provoking event. It represents a way in which social interactions can immediately and potently modulate behavior. As such, social buffering is one mechanism by which strong social support increases resilience to mental illness. Although the behavioral and neuroendocrine impacts of social buffering are well studied in multiple species, including humans, the neuronal underpinnings of this behavioral phenomenon remain largely unexplored. Previous work has shown that the infralimbic prefrontal cortex (IL-PFC) is important for processing social information and, in separate studies, for modulating fear and anxiety. Thus, we hypothesized that socially active cells within the IL-PFC may integrate social information to modulate fear responsivity. To test this hypothesis, we employed social buffering paradigms in male and female mice. Similar to prior studies in rats, we found that the presence of a cagemate reduced freezing in fear- and anxiety-provoking contexts. In accordance with previous work, we demonstrated that interaction with a novel or familiar conspecific induces activity in the IL-PFC as evidenced by increased immediate early gene (IEG) expression. We then utilized an activity-dependent tagging murine line, the ArcCreERT2 mice, to express channelrhodopsin (ChR2) in neurons active during the social encoding of a new cagemate. We found that optogenetic reactivation of these socially active neuronal ensembles phenocopied the effects of cagemate presence in male and female mice in learned and innate fear contexts without being inherently rewarding or altering locomotion. These data suggest that a social neural ensemble within the IL-PFC may contribute to social buffering of fear. These neurons may represent a novel therapeutic target for fear and anxiety disorders.