Porterfielddrew4382
Hyperhomocysteinemia is a common metabolic disorder that imposes major adverse health consequences. Reducing homocysteine levels, however, is not always effective against hyperhomocysteinemia-associated pathologies. Herein, we report the potential roles of methionyl-tRNA synthetase (MARS)-generated homocysteine signals in neural tube defects (NTDs) and congenital heart defects (CHDs). Increased copy numbers of MARS and/or MARS2 were detected in NTD and CHD patients. MARSs sense homocysteine and transmit its signal by inducing protein lysine (N)-homocysteinylation. Here, we identified hundreds of novel N-homocysteinylated proteins. N-homocysteinylation of superoxide dismutases (SOD1/2) provided new mechanistic insights for homocysteine-induced oxidative stress, apoptosis and Wnt signalling deregulation. Elevated MARS expression in developing and proliferating cells sensitizes them to the effects of homocysteine. Targeting MARSs using the homocysteine analogue acetyl homocysteine thioether (AHT) reversed MARS efficacy. AHT lowered NTD and CHD onsets in retinoic acid-induced and hyperhomocysteinemia-induced animal models without affecting homocysteine levels. We provide genetic and biochemical evidence to show that MARSs are previously overlooked genetic determinants and key pathological factors of hyperhomocysteinemia, and suggest that MARS inhibition represents an important medicinal approach for controlling hyperhomocysteinemia-associated diseases. © 2020 The Authors. PI3K chemical Published under the terms of the CC BY 4.0 license.Cortical neurons oscillate synchronously between the Up and Down state during slow-wave sleep and general anesthesia. Using local-field-potential recording in the rat prefrontal cortex (PFC), we have shown that systemic administration of methylphenidate promotes PFC Up states and reduces PFC slow oscillation, suggesting a depolarizing effect of the drug on PFC neurons. Here, we report that systemic injection of d-amphetamine produced similar effects. Our evidence further suggests that norepinephrine (NE) plays a major role in the effects of d-amphetamine since they were mimicked by the NE reuptake inhibitors tomoxetine and nisoxetine and completely blocked by the α1 receptor antagonist prazosin. The effects of d-amphetamine persisted, however, in the presence of α2 or β receptor blockade. Experiments with α1 subtype-selective antagonists further suggest that d-amphetamine's effects depend on activation of central, but not peripheral, α1A receptors. Unexpectedly, the putative α1 receptor agonist cirazoline failed to mimic the effects of d-amphetamine. Previous studies suggest that cirazoline is also an antagonist at α2 receptors. Furthermore, it is a partial, not full, agonist at α1B and α1D receptors. Whether or not these properties of cirazoline contribute to its failure to mimic d-amphetamine's effects remains to be determined. Methylphenidate and d-amphetamine are two most common medications for attention-deficit/hyperactivity disorder (ADHD). Both, however, are associated with adverse effects including abuse potential and psychotomimetic effects. Further understanding of their mechanisms of action will help develop safer treatments for ADHD and offer new insights into drug addiction and psychosis. © 2020 Society for the Study of Addiction.The change towards a food systems approach in the IPCC reflects a needed paradigm shift in the science-policy interface, and particularly in the climate change and agri-food research communities. A systems approach allows assessing simultaneously both adaptation and mitigation options and to select those more effective strategies in addressing climate change. There are still limitations that need to be addressed regarding the number of assessed crops, sectors, countries and social groups representation in order to overcome the historical epistemic injustice of the IPCC. © 2020 John Wiley & Sons Ltd.A hyphenated strategy by off-line coupling of 1,1'-diphenyl-2-picrylhydrazyl-high-performance liquid chromatography, high-speed countercurrent chromatography, and preparative high-performance liquid chromatography was established to screen and separate antioxidants from ethyl acetate fraction of the roots of Polygonum multiflorum. Under the targeted guidance of 1,1'-diphenyl-2-picrylhydrazyl-high-performance liquid chromatography experiment, 12 compounds were identified as potential antioxidants and readily isolated by high-speed counter-current chromatography and preparative high-performance liquid chromatography. Ultraviolet spectroscopy, mass spectrometry, and 1 H NMR spectroscopy were employed to identify their structures, which were assigned as gallic acid (1, 6.2 mg, 98.28%), catechin (2, 8.8 mg, 90.69%), epicatechin (3, 4.1 mg, 96.71%), polydatin (4, 5.3 mg, 94.91%), 2,3,5,4'-tetrahydroxy stilbene-2-Ο-β-D-glucoside (5, 20.2 mg, 95.23%), piceatannol (6, 5.3 mg, 96.85%), rutin (7, 5.4 mg, 97.92%), resveratrol (8, 5.2 mg, 96.94%), isorhapontigenin (9, 11.4 mg, 94.81%), hyperoside (10, 9.7 mg, 98.52%), rhein (11, 4.9 mg, 97.46%), and emodin (12, 8.2 mg, 95.74%). Notably, compounds 6 and 9 were isolated from Polygonum multiflorum for the first time. In addition, antioxidant activity of compounds 1-12 were evaluated, and compounds 1-8 and 10 exhibited stronger antioxidant activity than ascorbic acid (positive control). These results indicated that the proposed method is a highly efficient strategy to screen and isolate antioxidants from complex natural products. © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Selectively fluorinated compounds are found frequently in pharmaceutical and agrochemical products where currently 25-30 % of optimised compounds emerge from development containing at least one fluorine atom. There are many methods for the site-specific introduction of fluorine, but all are chemical and they often use environmentally challenging reagents. Biochemical processes for C-F bond formation are attractive, but they are extremely rare. In this work, the fluorinase enzyme, originally identified from the actinomycete bacterium Streptomyces cattleya, is engineered into Escherichia coli in such a manner that the organism is able to produce 5'-fluorodeoxyadenosine (5'-FDA) from S-adenosyl-l-methionine (SAM) and fluoride in live E. coli cells. Success required the introduction of a SAM transporter and deletion of the endogenous fluoride efflux capacity in order to generate an E. coli host that has the potential for future engineering of more elaborate fluorometabolites. © 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.Galectin-3 (Gal-3) has been implicated in various biological functions, yet little is known about its role in regulating the dynamics of pulmonary vascular endothelial cells. Gal-3 was shown to be increased in hypoxic model rats by sequencing analysis. We exposed pulmonary vessel endothelial cells (PVECs) to hypoxia or Gal-3 stimulation, following which cell apoptosis and autophagy were measured with the relevant methods. The results demonstrated that hypoxia elevated nuclear factor-κB (NF-κB) activity and Gal-3 expression. Gla-3 decreased the expression of Bcl-2, Alix, Beclin-1, Atg5, and LC3A/B. The messenger RNA and protein levels of transient receptor potential channel 1/4 (TRPC1/4) and calpain were reduced after Gal-3 treatment. Gal-3 also activated protein kinase B/glycogen synthase kinase-3 β/mammalian target of rapamycin signaling pathways in PVECs. These results suggest that a hypoxia-mediated increase in Gal-3 promotes apoptosis and inhibits autophagy by inhibiting the TRPC1/4 pathway and activating the protein kinase B/glycogen synthase kinase-3 β/mammalian target of rapamycin signaling pathway in PVECs. Furthermore, these results may provide us with a new direction to explore the pathogenesis of pulmonary artery hypertension. © 2020 Wiley Periodicals, Inc.Prodrugs activated by endogenous stimuli face the problem of tumor heterogeneity. Bioorthogonal prodrug activation that utilizes an exogenous click reaction has the potential to solve this problem, but most of the strategies currently used rely on the presence of endogenous receptors or overexpressed enzymes. We herein integrate the acidic, extracellular microenvironment of a tumor and a click reaction as a general strategy for prodrug activation. This was achieved by using a tumor pH-responsive polymer containing tetrazine groups, which formed unreactive micelles in the blood but disassembled in response to tumor pH. The vinyl ether group on the macrotheranostic prodrug (CyPVE) is activated by the tetrazine groups, which was confirmed by tumor-specific fluorescence activation and phototoxicity restoration. Therefore, the bioorthogonal reactions in the context of the ubiquitous acidic tumor microenvironment can provide a general strategy for bioorthogonal prodrug activation. © 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.BACKGROUND Juvenile hormones (JHs) are a class of sesquiterpenoids that play a pivotal role in insect growth and reproduction. link2 Synthetic JH agonists (JHAs), including pyriproxyfen, have been widely used as insecticides to control agricultural pests and disease vectors. The antimetamorphic action of JHAs is mediated by their intracellular receptor, the heterodimer of Methoprene-tolerant (Met) and Taiman (Tai) proteins. Although a range of bioassay systems has been developed to detect the activity of JHAs, each of these systems has its own drawback(s), such as poor reproducibility, the use of radioactive ligands or the effect of endogenous JH-signaling factors. RESULTS To address these issues, we constructed a new luciferase reporter assay for JHAs in mammalian HEK293T cells transiently transfected with the Drosophila Met and Tai genes. This reporter system gave highly reproducible results and showed nanomolar sensitivity to natural JHs. We then applied this reporter system to a structure-activity relationship (SAR) analysis of 14 natural and synthetic JHAs, leading to identification of the ligand structural factors important for the transcription-inducing activity. CONCLUSION Because this reporter system is not affected by the signaling cascade downstream of the JH receptors, it is suitable for evaluating the intrinsic activity of JHAs. The SAR results obtained in this study therefore provide invaluable information on the rational design of novel JHA insecticides. © 2020 Society of Chemical Industry.INTRODUCTION We examined whether the timing of the C-peptide response during an oral glucose tolerance test (OGTT) in relatives of type 1 diabetes (T1D) patients is predictive of disease onset. link3 METHODS We examined baseline 2-hr OGTTs from 670 relatives participating in the Diabetes Prevention Trial-Type 1 (age 13.8±9.6 years; BMI-z 0.3±1.1; 56% male) using univariate regression models. RESULTS T1D risk increased with lower early C-peptide responses (30-0 min) (X2 =28.8, p less then 0.001), and higher late C-peptide responses (120-60 min) (X2 = 23.3, p less then 0.001). When both responses were included in a proportional hazards model, they remained independently and oppositely associated with T1D, with a stronger overall association for the combined model than either response alone (X2 =41.1; p less then 0.001). By ROC analysis, the combined early and late C-peptide response was more accurately predictive of T1D than AUC C-peptide (p=0.005). CONCLUSIONS Our findings demonstrate that lower early and higher late C-peptide responses serve as indicators of increased T1D risk.