Claybragg7234

Z Iurium Wiki

Verze z 6. 8. 2024, 13:47, kterou vytvořil Claybragg7234 (diskuse | příspěvky) (Založena nová stránka s textem „2 µm and 0.6 µm. Further, statistical significance tests are conducted to determine the main factors affecting system performance. The measurement result…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

2 µm and 0.6 µm. Further, statistical significance tests are conducted to determine the main factors affecting system performance. The measurement results are compared and validated using a 3D optical microscope. The results obtained from the blind tests performed on aerospace component surfaces as large as 450mm×210mm are also presented.All common waveplate materials exhibit nonlinear dispersion of retardance, producing an unwanted chirp in the interference fringes that channeled spectropolarimeters use for heterodyning polarization data. After showing how to quantify this nonlinearity, we survey the common waveplate materials and find that MgF2 has significantly lower nonlinearity than any other available material. We also quantify the degree of crosstalk caused by dispersion nonlinearity and show that, unlike in linear dispersion, the degree of crosstalk depends on the sequence of how the phase calibration is implemented. Regardless of how the calibrated phases have been obtained, shifting each channel to baseband prior to windowing minimizes crosstalk error.The Laser Retroreflector Array for Lunar Landers (LRALL) is a small optical instrument designed to provide a target for precision laser ranging from a spacecraft in lunar orbit, enabling geolocation of the lander and its instrument suite and establishing a fiducial maker on the lunar surface. Here we describe the optical performance of LRALL at visible and near-infrared wavelengths. Individual corner cube reflectors (CCRs) within LRALL were tested for surface flatness and dihedral angle values. We also imaged the far-field diffraction patterns of individual CCRs as well as the entire retroreflector array over the range of possible incident angles to extract the optical cross section as a function of viewing angle. We also measured the optical properties of one of the CCRs over the lunar temperature range (100-380 K) and found no significant temperature-dependent variance. The test results show LRALL meets the design criteria and can be ranged to elevation angles above 30° with respect to the instrument base from an orbital laser altimeter such as the Lunar Orbiter Laser Altimeter on the Lunar Reconnaissance Orbiter. This work summarizes the test data and serves as a guide for future laser ranging to these retroreflector arrays.We consider a method for designing freeform mirrors generating prescribed irradiance distributions in the far field. The method is based on the formulation of the problem of calculating a ray mapping as a Monge-Kantorovich mass transportation problem and on the reduction of the latter problem to a linear assignment problem. As examples, we design freeform mirrors generating a uniform irradiance distribution in a rectangular region and a complex chessboard-shaped distribution. The mirror generating a rectangular irradiance distribution is fabricated and experimentally investigated. The experimental results are in good agreement with the numerical simulations and confirm the manufacturability of the mirrors designed using the considered method.We present a theoretical and experimental study on the impact of different thermal-induced free-space turbulence distributions on the M-quadrature amplitude modulation (M-QAM) signal transmission in radio frequency K-band over hybrid optical links of standard single mode fiber (SSMF) and free-space optics (FSO). Frequency multiplication using an external intensity modulator biased at the null transmission point has been employed to photonically generate radio signals at a frequency of 25 GHz , included for the frequency bands for fifth-generation (5G) mobile networks. Moreover, extensive simulations have been performed for 10Gb/s with 4-, 16-, and 64-QAM over 5 km of SSMF and 500 m long FSO channels under scenarios with different turbulence levels and distributions. Proof-of-concept experiments have been conducted for 20 MHz with 4- and 64-QAM over 5 km of SSMF and 2 m long FSO channels under turbulence conditions. Both theoretical and experimental systems have been analyzed in terms of error vector magnitude (EVM) performance showing feasible transmission over the hybrid links in the received optical power range. Non-uniform turbulence distributions are shown to have a different impact on M-QAM modulation formats, i.e., turbulence distributions with higher strength in the middle of the FSO link reveal a 1.9 dB penalty when using 64-QAM signals compared to a 1.3 dB penalty using 4-QAM signals, whereas higher penalties have been measured when 4-QAM format is transmitted over turbulence distributions with larger magnitude in the second half of the FSO link. The results have been validated by theoretical predictions and lead to practical consequences on future networks' deployment.We investigate the impact of input pulse duration and peak power of a femtosecond laser on pulse broadening and propagation losses in selected hollow-core antiresonant fiber (HC-ARF). The mixed effects of strong self-phase modulation and relatively weak Raman scattering broaden the spectral width, which in turn causes a portion of the output spectrum to exceed the transmission band of the fiber, resulting in transmission losses. By designing and setting up a gas flow control system and a vacuum system, the nonlinear behavior of the fiber filled with different pressurized gases is investigated. The experimental results show that replacing the air molecules in the fiber core with argon can weaken pulse broadening and increase the transmittable peak power by 14 MW for a given 122 MW input, while a vacuum system can reduce the nonlinearity to a larger extent, therefore enhancing the transmission of HC-ARF by at least 26 MW.A mathematical model considering the transmission of a partially coherent Gaussian Schell-model (GSM) beam in slant turbulence atmosphere of heterodyne detection was established. A closed-form expression of the weighting factor for the partially GSM beam at the receiving end was derived. The effect of the beam mode on the performance of the proposed detection system was theoretically investigated. The results show that the proportion of the fundamental mode and heterodyne efficiency can be optimized by controlling the waist radius of the signal and local oscillator beams. The inner scale of turbulence significantly affects the heterodyne efficiency and normalized M2. With a larger mode order, the proportion of the fundamental mode and heterodyne efficiency are lowered.In this paper, we propose a broadband tunable metamaterial absorber in the terahertz (THz) region. The absorber comprises a Dirac semimetal film, a dielectric layer, and a gold ground plane. Numerical results show that the absorptivity remains above 90% in the range from 5.7 THz to 8.4 THz when the Fermi level is 65 meV. By varying the Fermi energy of the Dirac semimetal film from 40 meV to 80 meV, the absorption bandwidth and absorption peaks can be dynamically tuned. To explain the mechanism of high absorption, the magnetic field, surface current, and power loss density distributions at different resonant frequencies were presented. Our work may have potential applications in various fields such as sensors, detectors, and photovoltaic devices in THz regions.Breath sensing is an effective tool for health monitoring. Previously, high-mesa waveguide structures have been proposed by our group for realizing a compact breath-sensing photonic circuit. By using the doped SiO2 as the waveguide core, 50% concentration CO2 has been detected. One issue of preventing parts per million (ppm)-order detection is the low portion of evanescent light (Γair=2.2%) in the doped SiO2 waveguides. In order to realize low propagation loss α and high Γair simultaneously, thin silicon (Si) waveguides with a Γair as high as 37.6% have been proposed and fabricated in this work. A thermal oxidation technique was applied to further reduce α, so that α was decreased from 1.45 to 0.84 and 0.29 to 0.2 dB/cm for the 0.5 and 3-µm-wide waveguide, respectively. According to our analysis, the significantly decreased α is attributed to recovering the damaged Si core and smoothing the waveguide sidewalls. The high Γair and effective loss reduction show a promising potential of applying Si high-mesa waveguides to realize ppm-order sensing.The shortest path is an extensive algorithm problem in graph theory. When faced with a huge amount of data in the shortest path problem, the problem with using traditional algorithms is the slow operation speed and high power consumption. To address these problems, this paper proposes a fully parallel matrix (FPM) algorithm. It uses the matrix multiplication principle and one-step modified signed-digit (MSD) adder, which can effectively implement parallel computing in ternary optical computers (TOCs). Finally, we compare clock cycles, and the results show that the TOC-based FPM algorithm can efficiently reduce the calculation time when solving the shortest path problem.The Lyot coronagraph is a widely known astronomical instrument used to realize direct imaging of exoplanets, and designing transmittance of an apodizer and Lyot stop is the key to obtaining high-contrast imaging. In this paper a new (to the best of our knowledge) optimization procedure used to design the apodizer and Lyot stop in the Lyot coronagraph is proposed. A two-step optimization program is established to obtain the optimum transmittance of an apodizer and Lyot stop in a sequential way. By using the optimized apodizer and Lyot stop obtained through the proposed optimization procedure, both the stellar light and its diffraction light could be strongly suppressed. Numerical results indicate that such an optimized Lyot coronagraph can produce a 1e-10 extinction of the stellar light near the diffraction limit (1.59λ/D), and a high contrast imaging of 1e-07 could still be obtained even with the influence of light intensity of planets themselves. In addition, the two-step optimization procedure brings in two benefits. First, the two-step optimization is approximately 1000 times faster than the joint optimization method [J. Astron. Telesc. Instrum. Syst.2, 011012 (2016)2329-412410.1117/1.JATIS.2.1.011012]. Second, the optimum transmittance of the Lyot stop is binary, and therefore, the requirements of the production process are reduced, resulting in a greatly reduced cost. At the same time, the performance of the optimized Lyot coronagraph is also analyzed in the case of a monochromatic light incident and bandwidth light incident, and the effect of the diameter of the Lyot stop on the results is also discussed in this paper, which makes sense when designing a coronagraph.A coupler is a device that allows interconversion of angular momentum of the optical beam among spin and orbital parts, without absorbing any angular momentum. In this paper, we demonstrate that a q-plate with q=1 can act as a coupler for any of the polarization distribution that can be represented by a point on a Poincare sphere (PS), or on a higher-order PS, or on a hybrid-order PS. A q-plate with any q-value can act as a coupler for polarization distribution that can be represented by an equatorial point on any of these spheres. It is also possible to find a q-plate with an appropriate q-value that can act as a creation or annihilation operator that raises or lowers the polarization singularity index. The q-plate being a coupler and made of half-wave plate segments, the singularity index change is concomitant with the helicity inversion of C-points. Interconversion of bright and dark C-points is possible by using a q-plate.

Autoři článku: Claybragg7234 (Schou Rask)