Terpchang9776
Sickle cell disease (SCD) affects approximately 5% of the world's population, and India has been the second highest country in the numbers of predicted SCD births. Despite the high burden in India, there is no state-led public health programme, and very few interventions dealing with the treatment and management of SCD are available. This review highlights the dearth of SCD-related interventions, and demonstrates that these interventions effectively improve patients' conditions and are feasible to implement in India. We systematically searched three databases-PubMed/Medline, Google Scholar and Web of Science-for articles from India on SCD-related interventions. The PRISMA guidelines were followed during this review. We included 22 studies, of which 19 dealt with specific therapeutic interventions, and 3 with comprehensive SCD care. Hydroxyurea therapy was the main therapy in 15 studies and is efficacious. Three studies demonstrated the feasibility of comprehensive care in resource-limited settings. The low number of SCD-related intervention studies does not match the huge burden of SCD in India. Governments of endemic countries should consider the findings of available interventions and include them in their countries' programmes. Comprehensive care is feasible in India and other low-resource settings, from screening to treatment and psychosocial support.New lanthanide carboxylate compounds with two- (2D) and three-dimensional (3D) structures have been prepared by employing 2,5-bis(prop-2-yn-1-yloxy)terephthalic acid (2,5-BPTA) as an organic linker. The compounds, [Ln(C14H8O6)(C7O3H4)·2H2O]·4(H2O), Ln = Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy and [Ln(C7O3H4)3·(C3H7ON)·(H2O)]·2(H2O)(C3H7NO), Ln = La, Ce, Pr, have two- and three-dimensional structures, respectively. In all compounds, lanthanide ions are connected together, forming a dimer, which is connected by the 2,5-BPTA ligand. In the two-dimensional structure, there are two 2,5-BPTA moieties present, and in the three-dimensional structure, there are three 2,5-BPTA moieties present. The lanthanide centers are nine-coordinated, the 2D structure has a tricapped trigonal prismatic arrangement, and the 3D structure has a monocapped distorted square antiprismatic arrangement. The Pr compound forms in both 2D and 3D structures, whose formation depends on the time of the reaction (2 days─2D and 5-6 days─3D). The ligand emits in the blue region, and using the characteristic emission of Eu3+ (red) and Tb3+ (green) ions, we achieve white light emission in the (Y0.96Tb0.02Eu0.02) compound. The overall quantum yield for the white light emission is 28%. The strong green luminescence of the Tb3+-containing compound was employed to selectively sense the Cr3+ and Fe3+ ions in aqueous solution with limits of detection (LODs) at 0.41 and 8.6 ppm, respectively. The Tb compound was found to be a good heterogeneous catalyst for the Ullman-type O-arylation reaction between phenol and bromoarene with yields of 95%. Magnetic studies on the Gd-, Tb-, and Dy-containing compounds showed weak exchange interactions within the dimeric Ln2 units. The present work demonstrates the many utilities of the rare-earth-containing MOFs, especially toward white-light emission, metal-ion sensing, and heterogeneous catalysis.Volatile organic compounds (VOCs) in urine are valuable biomarkers for noninvasive disease diagnosis. Herein, a facile coordination-driven modular assembly strategy is used for developing a library of gas-sensing materials based on porous MXene frameworks (MFs). Taking advantage of modules with diverse composition and tunable structure, our MFs-based library can provide more choices to satisfy gas-sensing demands. Meanwhile, the laser-induced graphene interdigital electrodes array and microchamber are laser-engraved for the assembly of a microchamber-hosted MF (MHMF) e-nose. Our MHMF e-nose possesses high-discriminative pattern recognition for simultaneous sensing and distinguishing of complex VOCs. Furthermore, with the MHMF e-nose being a plug-and-play module, a point-of-care testing (POCT) platform is modularly assembled for wireless and real-time monitoring of urinary volatiles from clinical samples. By virtue of machine learning, our POCT platform achieves noninvasive diagnosis of multiple diseases with a high accuracy of 91.7%, providing a favorable opportunity for early disease diagnosis, disease course monitoring, and relevant research.
With the rapid development of precision medicine, a large amount of health data (such as electronic health records, gene sequencing, medical images, etc.) has been produced. It encourages more and more interest in data-driven insight discovery from these data. A reasonable way to verify the derived insights is by checking evidence from biomedical literature. However, manual verification is inefficient and not scalable. Therefore, an intelligent technique is necessary to solve this problem.
This article introduces a framework for biomedical evidence engineering, addressing this problem more effectively. The framework consists of a biomedical literature retrieval module and an evidence extraction module. The retrieval module ensembles several methods and achieves state-of-the-art performance in biomedical literature retrieval. A BERT-based evidence extraction model is proposed to extract evidence from literature in response to queries. Moreover, we create a dataset with 1 million examples of biomedical evidence, 10000 of which are manually annotated.
Datasets are available at https//github.com/SendongZhao.
Datasets are available at https//github.com/SendongZhao.Transcriptome-wide association studies aim to integrate genome-wide association studies and expression quantitative trait loci mapping studies for exploring the gene regulatory mechanisms underlying diseases. Existing transcriptome-wide association study methods primarily focus on 1 gene at a time. However, complex diseases are seldom resulted from the abnormality of a single gene, but from the biological network involving multiple genes. In addition, binary or ordinal categorical phenotypes are commonly encountered in biomedicine. We develop a proportional odds logistic model for network regression in transcriptome-wide association study, Proportional Odds LOgistic model for NEtwork regression in Transcriptome-wide association study, to detect the association between a network and binary or ordinal categorical phenotype. Proportional Odds LOgistic model for NEtwork regression in Transcriptome-wide association study relies on 2-stage transcriptome-wide association study framework. It first adopts the distribuexisting methods. We finally apply Proportional Odds LOgistic model for NEtwork regression in Transcriptome-wide association study to analyze bipolar and major depression status and blood pressure from UK Biobank to illustrate its benefits in real data analysis.
The CRISPR/Cas9 system is widely used for genome editing. The editing efficiency of CRISPR/Cas9 is mainly determined by the guide RNA (gRNA). Although many computational algorithms have been developed in recent years, it is still a challenge to select optimal bioinformatics tools for gRNA design in different experimental settings.
We performed a comprehensive comparison analysis of 15 public algorithms for gRNA design, using 16 experimental gRNA datasets. Based on this analysis, we identified the top-performing algorithms, with which we further implemented various computational strategies to build ensemble models for performance improvement. Validation analysis indicates that the new ensemble model had improved performance over any individual algorithm alone at predicting gRNA efficacy under various experimental conditions.
The new sgRNA design tool is freely accessible as a web application via https//crisprdb.org. The source code and stand-alone version is available at Figshare (https//doi.org/10.6084/m9.figshare.21295863) and Github (https//github.com/wang-lab/CRISPRDB).
Supplementary data are available at Bioinformatics online.
Supplementary data are available at Bioinformatics online.Structural rearrangements like copy number variations in the male-specific Y chromosome have been associated with male fertility phenotypes in human and mouse but have been sparsely studied in other mammalian species. Here, we designed digital droplet PCR assays for 7 horse male-specific Y chromosome multicopy genes and SRY and evaluated their absolute copy numbers in 209 normal male horses of 22 breeds, 73 XY horses with disorders of sex development and/or infertility, 5 Przewalski's horses and 2 kulans. This established baseline copy number for these genes in horses. The TSPY gene showed the highest copy number and was the most copy number variable between individuals and breeds. SRY was a single-copy gene in most horses but had 2-3 copies in some indigenous breeds. Since SRY is flanked by 2 copies of RBMY, their copy number variations were interrelated and may lead to SRY-negative XY disorders of sex development. The Przewalski's horse and kulan had 1 copy of SRY and RBMY. TSPY and ETSTY2 showed significant copy number variations between cryptorchid and normal males (P less then 0.05). No significant copy number variations were observed in subfertile/infertile males. Notably, copy number of TSPY and ETSTY5 differed between successive male generations and between cloned horses, indicating germline and somatic mechanisms for copy number variations. We observed no correlation between male-specific Y chromosome gene copy number variations and male-specific Y chromosome haplotypes. We conclude that the ampliconic male-specific Y chromosome reference assembly has deficiencies and further studies with an improved male-specific Y chromosome assembly are needed to determine selective constraints over horse male-specific Y chromosome gene copy number and their relation to stallion reproduction and male biology.The National Aeronautics and Space Administration's Deep Space Quantum Link mission concept enables a unique set of science experiments by establishing robust quantum optical links across extremely long baselines. Potential mission configurations include establishing a quantum link between the Lunar Gateway moon-orbiting space station and nodes on or near the Earth. This publication summarizes the principal experimental goals of the Deep Space Quantum Link. These goals, identified through a multi-year design study conducted by the authors, include long-range teleportation, tests of gravitational coupling to quantum states, and advanced tests of quantum nonlocality.
Peroral endoscopic myotomy (POEM) is an established treatment for achalasia. In this systematic review and meta-analysis, we aimed to analyze the mid and long-term outcomes of POEM in esophageal motility disorders.
Literature search was performed in databases including PubMed, Embase, Cochrane databases, and Google scholar from January 2010 to May 2021. The primary objective of the study was the clinical success (Eckardt score ≤3 or <4) at mid-term (30 to 60 mo) and long-term (>60 mo) follow-up after POEM. Secondary objectives included post-POEM gastroesophageal reflux (GER) as evaluated by symptoms, increased esophageal acid exposure, and reflux esophagitis.
Seventeen studies with 3591 patients were included in the review. Subtypes of motility disorders were type I (27%), type II (54.5%), type III (10.7%), distal esophageal spasm/Jackhammer esophagus (2%), and esophagogastric junction outflow obstruction (17.5%). Pooled mean follow-up duration was 48.9 months (95% CI, 40.02-57.75). Pooled rate of clinical success at mid-term follow-up was 87% (95% CI, 81-91; I2, 86%) and long-term was 84% (95% CI, 76-89; I2, 47%).