Steffensenmcdowell3689
The above findings can provide targeted reference for policymakers in pricing carbon-labeled products, and also yield effective policy recommendations for the future development of carbon label system.The aim of this study was to assess potential differences in denitrification in contrasting stream habitats in agricultural lowland streams located in Denmark. The study focused on three types of habitats i) vegetated habitats with emergent plants, ii) vegetated habitats with submerged plants, iii) bare sediments. Denitrification rates were measured in situ using denitrification chambers and nitrogen isotope pairing technique three times during a growing season. Denitrification rates across all habitats and samplings were 73 ± 116 μmol N m-2 h-1 (mean ± sd) with greater denitrification rates in vegetated habitats compared to bare sediments. Habitats with emergent plants had significantly higher denitrification rates than habitats with submerged plants. The habitats exhibited differences in oxygen and carbon availability probably connected to differences in flow velocity and physical effect of the vegetation (if present) which likely acted as a trap for finer organic-rich particles. Placing these results in the context of stream and river restoration highlights the potential of in-stream vegetation to mitigate nitrogen pollution, especially by restoring plant habitats in degraded and channelized streams to sustain vegetation promoting higher denitrification rates.The enhanced assessment of groundwater contamination vulnerability is necessary for the management and conservation of groundwater resources because groundwater contamination has been much increased continuously in the world by anthropogenic origin. The purpose of this study is to determine the best model among three ANFIS-MOA models (the adaptive neuro-fuzzy inference system (ANFIS) combined with metaheuristic optimization algorithms (MOAs) such as genetic algorithm (GA), differential evolution algorithm (DE) and particle swarm optimization (PSO)) in assessing groundwater contamination vulnerability at a nitrate contaminated area. The Miryang City of South Korea was selected as the study area because the nitrate contamination was widespread in the city with two functions of urban and rural activities. Eight parameters (depth to water, net recharge, topographic slope, aquifer type, impact to vadose zone, hydraulic conductivity and landuse) were classified into the numerical ratings on basis of modified DRASTIing the subjectivity of physical and hydrogeological parameters in original DRASTIC method (ODM) and MDM. It is expected that ANFIS-PSO models will produce the excellent results in assessing groundwater contamination vulnerability and that they can greatly contribute to the groundwater security in other areas of the world as well as Miryang City of South Korea.Composites of two natural zeolites - clinoptilolite and phillipsite, and cationic surfactants (cetylpyridinium chloride and Arquad® 2HT-75) were tested for the removal of two emerging contaminants - ibuprofen and naproxen. For each zeolite-rich rock, two different modifications of the zeolitic surfaces were prepared (monolayer and bilayer surfactant coverage). The influence of the initial drug concentrations and contact time on adsorption of these drugs was followed in buffer solution. The Langmuir model showed the highest adsorption capacity for the composite characterized by a bilayered surfactant at the clinoptilolite surface 19.7 mg/g and 16.1 mg/g for ibuprofen and naproxen, respectively. Also, to simulate real systems, drug adsorption isotherms were conducted in natural water (Grindstone creek water - Columbia, Missouri, USA) by using the best performing adsorbent; in this case, a slight decrease of drug adsorption was recorded. Kinetic runs were performed in distilled water as well as in the presence of ions such as sulfates and bicarbonates; also, in this case, the interfering agents defined an adsorption decrease for bilayer composites.As an abundant and fast-growing biomass, bamboo can be used as construction materials owing to its desirable physical and mechanical properties, environmentally friendly features, and alternative to replace toxic and hazardous wastes in industrial processing. In this study, grid material made from bamboo (termed 'bamboo grid') was developed and compared to commercially used polyvinyl chloride (PVC) as packing material in cooling towers; PVC packing has drawbacks such as fouling, deposit buildup, low durability, and is harmful to environments. The cooling capacity, energy efficiency and environmental impact of bamboo grid packing were evaluated via life cycle assessment (LCA), particularly the cumulative energy demand (CED) and the Building for Environmental and Economic Sustainability (BEES). Although the thermal performance of the PVC packing was found higher than that of the bamboo grid packing, the bamboo grid packing showed improved resistance characteristic, recording a total saving of 529.2 tons of standard coal during a six-month field test in a real thermal power generation plant. LCA results revealed that the utilization of bamboo-grid packing to replace PVC packing in cooling towers reduced total CED from 3420 MJ to 561 MJ per functional unit, achieving 6 times reduction. A desirable reduction ranging from 1.5 to 10.5 times was also recorded for the BEES indices. This LCA comparison analysis confirmed the improvement of energy efficiency and reduction of environmental impact by using the bamboo grid to replace PVC as packing material in cooling towers. The major environmental impact (BEES) indices (e.g., the total Global warming potential, Acidification, Eutrophication and Smog) were reduced by 1.5-10.5 times via the use of bamboo grid. The results demonstrate that bamboo grid packing is a good alternative to replace existing grid packing materials such as concrete and PVC that are harmful to human health and environments.Debris flow alluvial fans (DFAFs) are vulnerable, although they can be used as a natural resource. The relationships between different factors related to DFAF systems and between these factors and systems are important both for identifying the risks and opportunities presented by DFAFs and for tracking system status. In this regard, resilience may be used to characterize the status of a DFAF. This study aimed to explore the processes and mechanisms of interactions among the social, economic, and ecological factors related to DFAF with respect to resilience, and to discuss potential problems in a representative DFAF. Based on the site condition and characteristics of the Awang DFAF (China) in the period 1996-2017, we formed a comprehensive indicator evaluation framework by analyzing disturbance, function, and feedback. We also established a model for evaluating resilience by integrating the analytic hierarchy process (AHP) - an entropy evaluation method (EEM) and set pair analysis (SPA). The results showed that the system of the studied DFAF was dynamically stable. The domination of the ecological system was subsequently superseded by social and economic resilience. While disturbance had direct and immediate effects, coping ability was cumulative and characterized by hysteresis at a particular response time. Overall, resilience fluctuated within an acceptable range rather than linearly increasing or decreasing. This analysis illuminated the dynamic processes of DFAFs and contributed to the understanding and planning of system trade-offs and degraded-land utilization.
During the 2020 COVID-19 pandemic there was a decrease in emergency room arrivals. There is limited evidence about the effect of this change in behavior on women's health. We aimed to evaluate the impact of the COVID-19 pandemic on the diagnosis, treatment and complications of women presenting with a tubal Ectopic Pregnancy (EP).
This is a single centre retrospective cohort study. We compared the clinical presentation, treatment modalities and complications of all women presenting in our institution with a tubal EP during the COVID-19 pandemic between 15 March and 15 June 2020, with women who were treated in our institution with the same diagnosis in the corresponding period for the years 2018-2019.
The study group included 19 cases of EP (N = 19) that were treated between the 15 March 2020 and 15 June 2020. The control group included 30 cases of EP (N = 30) that were admitted to in the corresponding period during 2018 and 2019. Maternal age, parity, gravity and mode of conception (natural vs. assisted)re providers should be alerted to this collateral damage in the non-infected population during the COVID-19 pandemic.This study investigated the effect of plasma-activated liquid (PAL) including plasma-activated water (PAW) and plasma-activated buffer solution (PABS) for the reduction of chlorothalonil (CTL) and thiram (THM) pesticide residues on tomato fruit. Results revealed that the PAL obtained by using atmospheric air as the feed gas, CTL residues were decreased to 85.3% and 74.2% and THM residues decreased to 79.47 and 72.21% after treatments with PAW10 and PABS10, respectively, and increasing the activation time caused a significant reduction in fungicide residues. In addition, CTL and THM residues were also decreased while increasing the activation time of PAL using Ar/O2 as the feed gas, the concentrations of the CTL residues were decreased to 75.07 and 69.89% for PAW10 and PABS10, respectively and THM residues decreased to 65.89 and 61.91% for PAW10 and PABS10, respectively. Oxidation-reduction potential (ORP) and electrical conductivity (EC) were increased significantly after plasma treatment, while pH values of both solutions were decreased significantly with activation time. NO3- and NO2- concentrations of PAW increased significantly, while for PABS, NO3- concentration decreased but NO2-, with increasing the plasma activation time. Additionally, washing with PAW and PABS caused no notable negative impact on tomato fruit. Results confirmed that PAL treatments showed a significant reduction of CTL and THM fungicide residues (p less then 0.05) in tomato without affecting the quality.A new strategy to mimic antibody for electrochemical recognition and detection of deoxynivalenol (DON) using a highly-sensitive and selective antibody-like sensor based on molecularly imprinted poly(l-arginine) (P-Arg-MIP) on carboxylic acid functionalized carbon nanotubes (COOH-MWCNTs) was proposed. l-arginine as functional monomer was screened to prepare imprinted electrode via its electro-polymerization in the presence of DON onto the surface of COOH-MWCNTs electrode coupled with theoretical calculation. Surface morphology, structural characteristics, and electrochemical properties of P-Arg-MIP/COOH-MWCNTs were characterized by SEM, EDS, FTIR, and CV, respectively. P-Arg-MIP/COOH-MWCNTs displayed relatively high conductivity, high effective surface area, antibody-like molecular recognition and affinity, and a good response towards DON in a linear range from 0.1 to 70 μM with LOD of 0.07 μM in wheat flour samples with satisfactory recovery and feasible practicability in comparison with HPLC. This method provides a promising biomimetic sensing platform for the determination of mycotoxins in food and agro-products.