Dinesenmcpherson0991
The Coronavirus Disease 2019 (COVID-19) global pandemic has had a profound, lasting impact on the world's population. A key aspect to providing care for those with COVID-19 and checking its further spread is early and accurate diagnosis of infection, which has been generally done via methods for amplifying and detecting viral RNA molecules. Detection and quantitation of peptides using targeted mass spectrometry-based strategies has been proposed as an alternative diagnostic tool due to direct detection of molecular indicators from non-invasively collected samples as well as the potential for high-throughput analysis in a clinical setting; many studies have revealed the presence of viral peptides within easily accessed patient samples. However, evidence suggests that some viral peptides could serve as better indicators of COVID-19 infection status than others, due to potential misidentification of peptides derived from human host proteins, poor spectral quality, high limits of detection etc. In this study we hsively. We propose that these peptides would be of the most value for clinical proteomics applications seeking to detect COVID-19 from a variety of sample types. We also contend that samples taken from the upper respiratory tract and oral cavity have the highest potential for diagnosis of SARS-CoV-2 infection from easily collected patient samples using mass spectrometry-based proteomics assays.
Nursing home residents and staff were included in the first phase of COVID-19 vaccination in the United States. Because the primary trial endpoint was vaccine efficacy (VE) against symptomatic disease, there are limited data on the extent to which vaccines protect against SARS-CoV-2 infection and the ability to infect others (infectiousness). Assumptions about VE against infection and infectiousness have implications for possible changes to infection prevention guidance for vaccinated populations, including testing strategies.
We use a stochastic agent-based SEIR model of a nursing home to simulate SARS-CoV-2 transmission. We model three scenarios, varying VE against infection, infectiousness, and symptoms, to understand the expected impact of vaccination in nursing homes, increasing staff vaccination coverage, and different screening testing strategies under each scenario.
Increasing vaccination coverage in staff decreases total symptomatic cases in each scenario. When there is low VE against infectionCoV-2 vaccines against infection, infectiousness, or disease, impacts strategies for vaccination and testing in nursing homes. If vaccines confer some protection against infection or infectiousness, encouraging vaccination in staff may reduce symptomatic cases in residents.
The novel coronavirus, SARS-CoV2 that causes COVID-19 has resulted in the death of more than 2.31 million people within the last year and yet no cure exists. Whereas passive immunization with COVID-19 convalescent plasma (CCP) provides a safe and viable option, selection of optimal units for therapy and lack of clear therapeutic benefit from transfusion remain as barriers to the use of CCP.
To identify plasma that is expected to benefit recipients, we measured anti-SARS-CoV2 antibody levels using clinically available serological assays and correlated with the neutralizing activity of CCP from donors. Neutralizing titer of plasma samples was measured by assaying infectivity of SARS-CoV-2 spike protein pseudotyped retrovirus particles in the presence of dilutions of plasma samples. We also used this assay to identify evidence of passive transfusion of neutralizing activity in CCP recipients.
Viral neutralization and anti-spike protein antibodies in 109 samples from 87 plasma donors were highly varied but modestly correlated with each other. Recipients who died of COVID-19 were found to have been transfused with units with lower anti-spike antibody levels and neutralizing activity. Passive transfer of neutralization activity was documented in 62% of antibody naive plasma recipients.
Since viral neutralization is the goal of CCP transfusion, our observations not only support the use of anti-spike SARS-CoV2 serology tests to identify beneficial CCP units, but also support the therapeutic value of convalescent plasma with high titers of anti-spike antibodies.
Since viral neutralization is the goal of CCP transfusion, our observations not only support the use of anti-spike SARS-CoV2 serology tests to identify beneficial CCP units, but also support the therapeutic value of convalescent plasma with high titers of anti-spike antibodies.
The coronavirus disease 2019 (COVID-19) pandemic may have a negative impact on mental health of the population, leading to higher suicide rates, in many countries. However, little is known about risk factors associated with worsened mental health during the COVID-19 pandemic.
To investigate the factors associated with serious psychological distress (SPD) during the COVID-19 pandemic in Japan.
A cross-sectional study using a large-scale internet survey conducted between August 25 and September 30, 2020, in Japan.
Demographics (age, gender, marital status, family composition, and caregiving burden), socio-economic status (income level, employment type, educational attainment), the experience of domestic violence (DV), the state of emergency, fear of COVID-19, and stigma related to COVID-19.
Prevalence of SPD, defined as Kessler 6 scale score ≥13.
Among 25,482 individuals included in this study, 2,556 (10%) met the criteria of SPD. Overall, women (adjusted odds ratio [aOR] 1.59; 95%CI, 1.17-2.16; P=0ed with a higher rate of SPD. Targeted interventions based on age and gender may be more effective in mitigating the negative impact of the COVID-19 pandemic on the population's mental health.
Economic situation, caregiving burden, DV, and fear of COVID-19 were independently associated with SPD during the COVID-19 pandemic. Among young women-who have a higher risk of suicide during the COVID-19 pandemic in Japan-similar factors, except economic situation, were associated with a higher rate of SPD. Targeted interventions based on age and gender may be more effective in mitigating the negative impact of the COVID-19 pandemic on the population's mental health.
High frequency, rapid turnaround SARS-CoV-2 testing continues to be proposed as a way of efficiently identifying and mitigating transmission in congregate settings. However, two SARS-CoV-2 outbreaks occurred among intercollegiate university athletic programs during the fall 2020 semester despite mandatory directly observed daily antigen testing.
During the fall 2020 semester, athletes and staff in both programs were tested daily using Quidel's Sofia SARS Antigen Fluorescent Immunoassay (FIA), with positive antigen results requiring confirmatory testing with real-time reverse transcription polymerase chain reaction (RT-PCR). We used genomic sequencing to investigate transmission dynamics in these two outbreaks.
In Outbreak 1, 32 confirmed cases occurred within a university athletics program after the index patient attended a meeting while infectious despite a negative antigen test on the day of the meeting. Among isolates sequenced from Outbreak 1, 24 (92%) of 26 were closely related, suggesting sustaineercollegiate university athletic programs during the fall 2020 semester.
High frequency, rapid turnaround SARS-CoV-2 testing continues to be proposed as a way of efficiently identifying and mitigating transmission in congregate settings. However, here we describe two SARS-CoV-2 outbreaks occurred among intercollegiate university athletic programs during the fall 2020 semester.Cases of SARS-CoV-2 infection in Manaus, Brazil, resurged in late 2020, despite high levels of previous infection there. Through genome sequencing of viruses sampled in Manaus between November 2020 and January 2021, we identified the emergence and circulation of a novel SARS-CoV-2 variant of concern, lineage P.1, that acquired 17 mutations, including a trio in the spike protein (K417T, E484K and N501Y) associated with increased binding to the human ACE2 receptor. Molecular clock analysis shows that P.1 emergence occurred around early November 2020 and was preceded by a period of faster molecular evolution. Using a two-category dynamical model that integrates genomic and mortality data, we estimate that P.1 may be 1.4-2.2 times more transmissible and 25-61% more likely to evade protective immunity elicited by previous infection with non-P.1 lineages. Enhanced global genomic surveillance of variants of concern, which may exhibit increased transmissibility and/or immune evasion, is critical to accelerate pandemic responsiveness.
We report the evolution and emergence of a SARS-CoV-2 lineage of concern associated with rapid transmission in Manaus.
We report the evolution and emergence of a SARS-CoV-2 lineage of concern associated with rapid transmission in Manaus.We analyze data from the Fall 2020 pandemic response efforts at the University of Colorado Boulder (USA), where more than 72,500 saliva samples were tested for SARS-CoV-2 using quantitative RT-PCR. All samples were collected from individuals who reported no symptoms associated with COVID-19 on the day of collection. From these, 1,405 positive cases were identified. The distribution of viral loads within these asymptomatic individuals was indistinguishable from what has been previously reported in symptomatic individuals. Regardless of symptomatic status, approximately 50% of individuals who test positive for SARS-CoV-2 seem to be in non-infectious phases of the disease, based on having low viral loads in a range from which live virus has rarely been isolated. We find that, at any given time, just 2% of individuals carry 90% of the virions circulating within communities, serving as viral "super-carriers" and possibly also super-spreaders.
The relationship between coronavirus disease 2019 (Covid-19) and ischemic stroke is poorly defined. We aimed to leverage genetic data to investigate reported associations.
Genetic association estimates for liability to Covid-19 and cardiovascular traits were obtained from large-scale consortia. Analyses primarily focused on critical Covid-19, defined as hospitalization with Covid-19 requiring respiratory support or resulting in death. Cross-trait linkage disequilibrium score regression was used to estimate genetic correlations of critical Covid-19 with ischemic stroke, other related cardiovascular outcomes, and risk factors common to both Covid-19 and cardiovascular disease (body mass index, smoking and chronic inflammation, estimated using C-reactive protein). Mendelian randomization analysis was performed to investigate whether liability to critical Covid-19 was associated with increased risk of any of the cardiovascular outcomes for which genetic correlation was identified.
There was evidence of genevid-19.
These data support that liability to critical Covid-19 is associated with an increased risk of ischemic stroke. The host response predisposing to severe Covid-19 is likely to increase the risk of ischemic stroke, independent of other potentially mitigating risk factors.
These data support that liability to critical Covid-19 is associated with an increased risk of ischemic stroke. The host response predisposing to severe Covid-19 is likely to increase the risk of ischemic stroke, independent of other potentially mitigating risk factors.